

Wellenführungen

Linearlager und Linearlager-Einheiten Vollwellen, Hohlwellen Tragschienen Wellenböcke

Alle Angaben wurden sorgfältig erstellt und überprüft. Für eventuelle Fehler oder Unvollständigkeiten können wir jedoch keine Haftung übernehmen. Technische Änderungen behalten wir uns vor.

© Schaeffler Technologies AG & Co. KG Ausgabe: 2015, Dezember

Nachdruck, auch auszugsweise, nur mit unserer Genehmigung.

Vorwort

Wellenführungen bestehen aus Wellen oder Tragschienen, auf denen reibungsarme Linear-Kugellager oder Gleitlager laufen. Die Wellen können als Voll- oder Hohlwelle ausgeführt sein, Tragschienen sind immer massiv. Zur einfachen Befestigung an der Anschlusskonstruktion werden die Führungen auch als komplette Linearlager-Einheiten geliefert.

Wirtschaftlich durch Baukastensystem

Das nach dem Baukastensystem aufgebaute Gesamt-Programm erlaubt besonders anwendungsorientierte, technisch hochmoderne und sehr wirtschaftliche Linearlager-Längsführungen mit langer, wartungsarmer Gebrauchsdauer.

Lager und Einheiten gibt es als Kompakt-, Leichtbau-, Schwerlast-, Massiv- und Gleitlager-Reihe. Jede Baureihe verfügt über ganz spezifische Eigenschaften, die sie für bestimmte Anwendungen besonders prädestiniert.

Linearlager

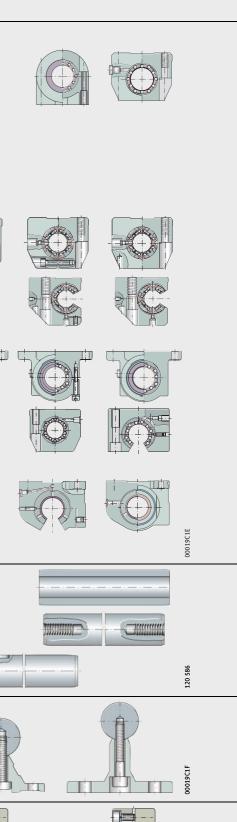
Linear-Kugellager nehmen hohe radiale Belastungen bei relativ niedrigem Gewicht auf und ermöglichen Längsführungen mit unbegrenzten Verfahrwegen. Die Lager gibt es geschlossen und mit Segment-Ausschnitt für unterstützte Wellen. Bei einigen Baureihen kann das Radialspiel eingestellt werden. Damit sind spielfreie oder vorgespannte Führungen möglich. Abhängig von der Anwendung sind die Linearlager ohne Abdichtung oder beidseitig mit schleifenden Dichtungen ausgestattet.

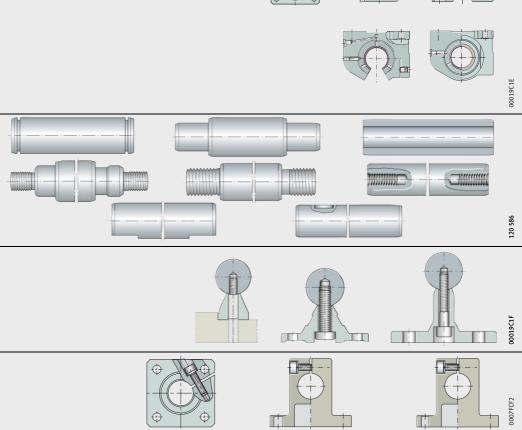
Linearlager-Einheiten

Bei den Linearlager-Einheiten ist das Lager in einem festen und steifen Gehäuse integriert. Die Gehäuse gibt es geschlossen, offen, geschlitzt und als Tandem-Ausführung. Durch ihre niedrige Gesamtmasse eignen sich die Einheiten besonders gut für gewichtsreduzierte Konstruktionen mit hohen Belastungen sowie bei höheren Beschleunigungen und Verfahrgeschwindigkeiten. Durch die Serienfertigung in hohen Stückzahlen sind die kompletten Einheiten meist erheblich wirtschaftlicher als Kunden-Eigenkonstruktionen.

Inhaltsverzeichnis

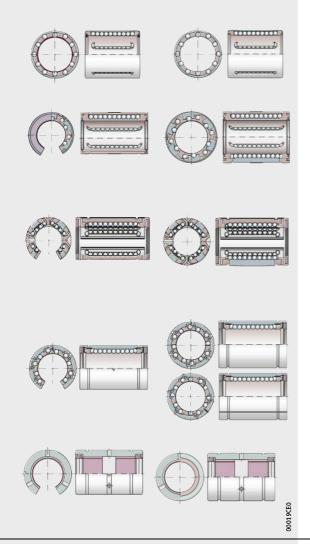
	Seite
Verzeichnis der Baureihen	6
Produktübersicht	10
Wellenführungen	
Technische Grundlagen	12
Linearlager und Linearlager-Einheiten	44
Vollwellen, Hohlwellen	104
Tragschienen	128
Wellenböcke	144
Adressen	156

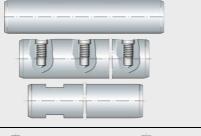

Verzeichnis der Baureihen

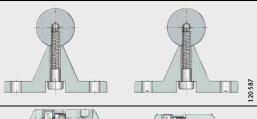

	Se	eite
KH	Linear-Kugellager, Kompakt-Reihe	48
KGHAPP	Linear-Kugellager-Einheit, Kompakt-Reihe, geschlossen, abgedichtet	48
KGHKB-PP-AS	Linear-Kugellager-Einheit, Kompakt-Reihe, geschlossen, abgedichtet, nachschmierbar	48
KTHKB-PP-AS	Linear-Kugellager-Einheit, Kompakt-Reihe, geschlossen, Lager in Tandem-Anordnung, abgedichtet, nachschmierbar	48
KNB	Linear-Kugellager, Leichtbau-Reihe, geschlossen, winkeleinstellbar	48
KNOB	Linear-Kugellager, Leichtbau-Reihe, Segment-Ausschnitt, winkeleinstellbar	48
KS	Linear-Kugellager, Schwerlast-Reihe, geschlossen, winkeleinstellbar	49
KSO	Linear-Kugellager, Schwerlast-Reihe, Segment-Ausschnitt, winkeleinstellbar	49
KGSCPP-AS	Linear-Kugellager-Einheit, Schwerlast-Reihe, Segment-Ausschnitt, abgedichtet, nachschmierbar	49
KGSCSPP-AS	Linear-Kugellager-Einheit, Schwerlast-Reihe, Segment-Ausschnitt, Gehäuse geschlitzt, abgedichtet, nachschmierbar	49
KGSNGPP-AS	Linear-Kugellager-Einheit, Schwerlast-Reihe, geschlossen, abgedichtet, nachschmierbar	49
KGSNOPP-AS	Linear-Kugellager-Einheit, Schwerlast-Reihe, Segment-Ausschnitt, abgedichtet, nachschmierbar	49
(GSNOSPP-AS	Linear-Kugellager-Einheit, Schwerlast-Reihe, Segment-Ausschnitt, Gehäuse geschlitzt, abgedichtet, nachschmierbar	49
KGSNSPP-AS	Linear-Kugellager-Einheit, Schwerlast-Reihe, Gehäuse geschlitzt, abgedichtet, nachschmierbar	49
KTFS	Linear-Kugellager-Einheit, Schwerlast-Reihe, geschlossen, Lager in Tandem-Anordnung, mit Zentrierbund, abgedichtet, nachschmierbar	49

	Seite
KTSGPP-AS	Linear-Kugellager-Einheit, Schwerlast-Reihe, geschlossen, Lager in Tandem-Anordnung, abgedichtet, nachschmierbar
KTSOPP-AS	Linear-Kugellager-Einheit, Schwerlast-Reihe, Lager in Tandem-Anordnung, Segment-Ausschnitt, abgedichtet, nachschmierbar
KTSOSPP-AS	Linear-Kugellager-Einheit, Schwerlast-Reihe, Lager in Tandem-Anordnung, Segment-Ausschnitt, Gehäuse geschlitzt, abgedichtet, nachschmierbar
KTSSPP-AS	Linear-Kugellager-Einheit, Schwerlast-Reihe, geschlossen, Lager in Tandem-Anordnung, Gehäuse geschlitzt, abgedichtet, nachschmierbar
KB	Linear-Kugellager, Massiv-Reihe, geschlossen 50
КВО	Linear-Kugellager, Massiv-Reihe, geschlossen, Segment-Ausschnitt 50
KBS	Linear-Kugellager, Massiv-Reihe, geschlitzt 50
KFBB-PP-AS	Linear-Kugellager-Einheit, Massiv-Reihe, geschlossen, mit Flansch, abgedichtet, nachschmierbar
KGBPP-AS	Linear-Kugellager-Einheit, Massiv-Reihe, geschlossen, abgedichtet, nachschmierbar 50
KGBAPP-AS	Linear-Kugellager-Einheit, Massiv-Reihe, geschlossen, abgedichtet, nachschmierbar 50
KGBAOPP-AS	Linear-Kugellager-Einheit, Massiv-Reihe, Segment-Ausschnitt, abgedichtet, nachschmierbar 50
KGBASPP-AS	Linear-Kugellager-Einheit, Massiv-Reihe, Gehäuse geschlitzt, abgedichtet, nachschmierbar 50
KGBOPP-AS	Linear-Kugellager-Einheit, Massiv-Reihe, Segment-Ausschnitt, abgedichtet, nachschmierbar 50
KGBSPP-AS	Linear-Kugellager-Einheit, Massiv-Reihe, Gehäuse geschlitzt, abgedichtet, nachschmierbar 50

Verzeichnis der Baureihen


		Seite
KTBPP-AS	Linear-Kugellager-Einheit, Massiv-Reihe, geschlossen, Lager in Tandem-Anordnung, abgedichtet, nachschmierbar	50
KTBOPP-AS	Linear-Kugellager-Einheit, Massiv-Reihe, Segment-Ausschnitt, Lager in Tandem-Anordnung, abgedichtet, nachschmierbar	50
PABPP-AS	Linear-Gleitlager, Gleitlager-Reihe, geschlossen, abgedichtet, nachschmierbar	51
PABOPP-AS	Linear-Gleitlager, Gleitlager-Reihe, Segment-Ausschnitt, abgedichtet, nachschmierbar	51
PAGBAPP-AS	Linear-Gleitlager-Einheit, Gleitlager-Reihe, geschlossen, abgedichtet, nachschmierbar	51
PAGBAOPP-AS	Linear-Gleitlager-Einheit, Gleitlager-Reihe, Segment-Ausschnitt, abgedichtet, nachschmierbar	51
W	Vollwellen	108
WH	Hohlwellen	108
TSNW	Tragschiene zur Befestigung von oben	132
TSNWG4	Tragschiene zur Befestigung von oben	132
TSNWG5	Tragschiene zur Befestigung von oben	132
TSUW	Tragschiene zur Befestigung von unten	132
TSWW	Tragschiene zur Befestigung von oben	132
TSWWA	Tragschiene zur Befestigung von oben	132
FWB	Wellenbock mit Flansch	148
GW	Wellenbock	148
GWAB	Wellenbock	
GWHB	Wellenbock	148
GWN -R	Wellenback	1/18

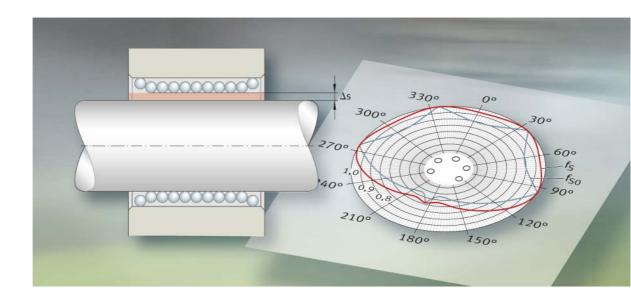



Technische Grundlagen

Linearlager und Linearlager-Einheiten Kompakt-Reihe Leichtbau-Reihe Schwerlast-Reihe Massiv-Reihe Gleitlager-Reihe

Vollwellen Hohlwellen

Tragschienen



Wellenböcke

Technische Grundlagen

Tragfähigkeit und Lebensdauer Reibung Schmierung Gestaltung der Lagerung Betriebsspiel Einbau

	Se	eite
Tragfähigkeit und	Nominelle Lebensdauer	15
Lebensdauer	Gebrauchsdauer	16
	Statische Tragsicherheit	16
	Einfluss der Wellenlaufbahn auf die Tragzahlen	17 17
	Lastrichtung und Stellung der Kugelreihen Hauptlastrichtung Linear-Kugellager Linear-Kugellager-Einheiten	18 19
	Schiefstellung der Welle Lastfaktoren bei der Schiefstellung Ausgleich von Winkelfehlern bei der Leichtbau- und Schwerlast-Reihe	25
Reibung	Reibungskoeffizient	
Schmierung	FettschmierungAufbau geeigneter Schmierfette Erstbefettung und Gebrauchsdauer Nachschmierung von Linear-Kugellagern in Gehäusen	28 28
	Schmiernippel für Gehäuse	30
	Einsatz in besonderen Umgebungen	32
	Ölschmierung Geeignete Schmieröle	
Gestaltung der Lagerung	Befestigung Linear-Kugellager KH Linear-Kugellager KNB, KB, KS und Gleitlager PAB Linear-Kugellager KNOB, KBO und Gleitlager PABO Linear-Kugellager-Einheiten Abdichtung	33 33 34 35
	Spalt- oder schleifende Dichtung	

Technische Grundlagen

	Se	eite
Betriebsspiel	Toleranz und Betriebsspiel	37
	Einbautoleranzen und Betriebsspiel	38
Einbau	Einbau der Lager Linear-Kugellager KH Linear-Kugellager KNB, KNOB, KB, KBS, KBO, KS, KSO und Linear-Gleitlager PAB, PABO	39
	Ausrichten der Lager und Wellen	41 41 42 42
	Betriebsspiel einstellen	43
	Hängende Anordnung des Führungssystems	43

Die Größe eines Linear-Kugellagers wird bestimmt von den Anforderungen an seine Belastbarkeit, Lebensdauer und Betriebssicherheit.

Die Tragfähigkeit (Belastbarkeit) wird beschrieben durch die:

- Dynamische Tragzahl C
- \blacksquare Statische Tragzahl C₀.

Die Berechnung der dynamischen und statischen Tragzahlen in den Maßtabellen basiert auf DIN 636-1.

Nominelle Lebensdauer

Die nominelle Lebensdauer L wird von 90 % einer genügend großen Menge gleicher Lager erreicht oder überschritten, bevor erste Anzeichen einer Werkstoffermüdung auftreten.

$$L = \left(\frac{C}{P}\right)^{3}$$

$$L_{h} = \frac{833}{H \cdot n_{osc}} \cdot \left(\frac{C}{P}\right)^{3}$$

$$L_{h} = \frac{1666}{\overline{V}} \cdot \left(\frac{C}{P}\right)^{3}$$

m

Nominelle Lebensdauer L in 100 000 m

C r

Dynamische Tragzahl

P N

Dynamisch äquivalente Belastung

_h h

Nominelle Lebensdauer in Betriebsstunden

Einfacher Hub

 $n_{\rm osc}$ ${\rm min}^{-1}$

Anzahl der Doppelhübe je Minute

 \bar{v} m/min

Mittlere Verfahrgeschwindigkeit.

Schaeffler Technologies

Tragfähigkeit und Lebensdauer

Gebrauchsdauer

Die Gebrauchsdauer ist die tatsächlich erreichte Lebensdauer einer Wellenführung. Sie kann deutlich von der errechneten Lebensdauer abweichen.

Zu vorzeitigem Ausfall durch Verschleiß oder Ermüdung können führen:

- Fluchtungsfehler zwischen den Wellen oder den Führungselementen
- Verschmutzung
- Unzureichende Schmierung
- Oszillierende Bewegungen mit sehr kleinen Hüben (Riffelbildung)
- Vibrationen bei Stillstand (Riffelbildung).

Durch die Vielfalt der Einbau- und Betriebsverhältnisse ist es nicht möglich, die Gebrauchsdauer einer Wellenführung exakt im Voraus zu bestimmen. Der sicherste Weg für eine zutreffende Abschätzung der Gebrauchsdauer ist der Vergleich mit ähnlichen Einbaufällen.

Statische Tragsicherheit

Die statische Tragsicherheit S_0 gibt die Sicherheit gegen unzulässige bleibende Verformungen im Lager an und wird durch folgende Gleichung ermittelt.

$$S_0 = \frac{C_0}{P_0}$$

 $\begin{array}{ccc} \mathsf{S}_0 & - \\ \mathsf{Statische} \ \mathsf{Tragsicherheit} \\ \mathsf{C}_0 & \mathsf{N} \\ \mathsf{Statische} \ \mathsf{Tragzahl} \\ \mathsf{P}_0 & \mathsf{N} \\ \mathsf{Statisch} \ \mathsf{\ddot{a}quivalente} \ \mathsf{Belastung}. \end{array}$

Für Linear-Kugellager KH und KN..-B muss $S_0 \geqq 4$ sein! Hinsichtlich der Führungsgenauigkeit und Laufruhe wird $S_0 \leqq 2$ als zulässig angesehen! Bei $S_0 < 2$ bitte rückfragen!

Einfluss der Wellenlaufbahn auf die Tragzahlen

Die Tragzahlen in den Maßtabellen gelten nur, wenn eine geschliffene (Ra 0,3) und gehärtete Welle (mindestens 670 HV) als Laufbahn dient.

Abweichende Härte der Laufbahn

Werden Wellen mit einer niedrigeren Oberflächenhärte als 670 HV verwendet (zum Beispiel Wellen aus X46 oder X90), so ist ein Härtefaktor zu berücksichtigen, siehe Gleichungen und Bild 1.

$$C_H = f_H \cdot C$$

$$\mathsf{C}_{0H} = \mathsf{f}_{H0} \cdot \mathsf{C}_{0}$$

C_H N Wirksame dynamische Tragzahl


Dynamischer Härtefaktor, Bild 1

Dynamische Tragzahl

 C_{OH} Wirksame statische Tragzahl

f_{H0} – Statischer Härtefaktor, *Bild 1*

C₀ Statische Tragzahl.

f_{H0} = Statischer Härtefaktor $f_H = Dynamischer Härtefaktor$ HV, HRC = Oberflächenhärte

> (1) X90 (2) X46

Bild 1 Statische und dynamische Härtefaktoren bei Minderhärte der Laufbahn

Tragfähigkeit und Lebensdauer

Lastrichtung und Stellung der Kugelreihen

Die wirksame Tragzahl eines Linear-Kugellagers hängt ab von der Lage der Lastrichtung zur Stellung der Kugelreihen:

- Die niedrigste Tragzahl C_{min} und C_{0 min} ergibt sich in Scheitelstellung, Bild 2
- Die höchste Tragzahl C_{max} und C_{0 max} ergibt sich in Symmetriestellung, Bild 2.

Wenn die Lager gerichtet eingebaut werden, kann die maximale Tragzahl genutzt werden. Ist ein gerichteter Einbau nicht möglich oder ist die Belastungsrichtung nicht definiert, so ist von den minimalen Tragzahlen auszugehen.

Hauptlastrichtung

Bei Linear-Kugellagern und Linear-Kugellager-Einheiten, bei denen die Einbaulage der Kugelreihen definiert ist, sind die Tragzahlen C und C_0 in Hauptlastrichtung angegeben, Bild 3. Für abweichende Belastungsrichtungen lassen sich die wirksamen Tragzahlen mit den Lastrichtungsfaktoren in Bild 4, Seite 20, bis Bild 21, Seite 24, ermitteln.

Ist die Einbaulage der Kugelreihen nicht definiert, sind die minimalen Tragzahlen angegeben.

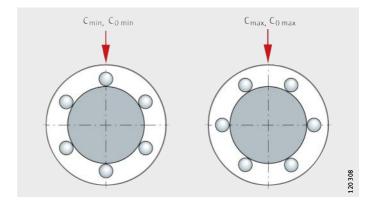
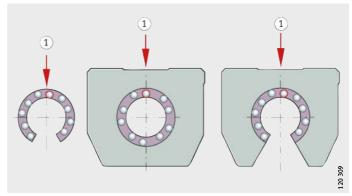



Bild 2 Tragfähigkeit, abhängig von der Stellung der Kugelreihen

(1) Hauptlastrichtung

Bild 3 Hauptlastrichtung für Lager und Einheiten

Linear-Kugellager

Die Tragzahlen in den Maßtabellen sind folgendermaßen definiert:

- Für KH, KN..-B, KS, KB und KBS gelten die Minimal- und Maximaltragzahlen, Bild 2, Seite 18.
- Für KNO..-B, KSO und KBO gelten die Tragzahlen in Hauptlastrichtung. Bei abweichenden Lastrichtungen, Bild 4, Seite 20, bis Bild 13, Seite 22.

Linear-Kugellager-Einheiten

Die Tragzahlen in den Maßtabellen sind folgendermaßen definiert:

Kompakt-Reihe

Für die Einheiten KGHK, KTHK gilt die minimale Tragzahl.

Schwerlast-Reihe

Für die Schwerlast-Reihe gilt die Tragzahl in Hauptlastrichtung. Bei abweichenden Lastrichtungen, Bild 14 bis Bild 17, Seite 23.

Massiv-Reihe

Für die Einheiten KGB, KGBA, KTB, KGBS, KGBAS gilt die minimale Tragzahl.

Für die offenen Einheiten KGBO, KGBAO gilt die Tragzahl in Hauptlastrichtung. Bei abweichenden Lastrichtungen, Bild 20 und Bild 21, Seite 24.

Lastrichtungsfaktoren

Die Faktoren in Bild 4, Seite 20, bis Bild 13, Seite 22, berücksichtigen:

$$C_w = f_S \cdot C$$

Wirksame dynamische Tragfähigkeit

 f_S – Dynamischer Lastfaktor für Lastrichtung

Dynamische Tragzahl.

$$C_{0w} = f_{S0} \cdot C_0$$

 ${\sf C_{\sf OW}}$ N Wirksame statische Tragfähigkeit

Statischer Lastfaktor für Lastrichtung

C₀ Statische Tragzahl.

Schaeffler Technologies

Tragfähigkeit und Lebensdauer

330° 30° 300° 60° fs f_{S0} 90° 120° 240 150° 210° 180°

Bild 4 Kompakt-Reihe Lastrichtungsfaktor für KH06, KH08, KH10

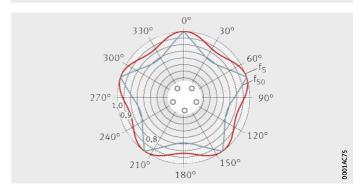


Bild 5 Kompakt-Reihe Lastrichtungsfaktor für KH12, KH14, KH16

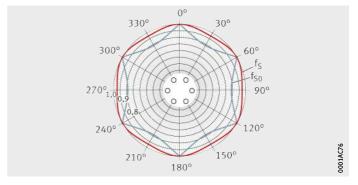


Bild 6 Kompakt-Reihe Lastrichtungsfaktor für KH20, KH25

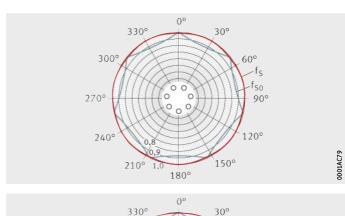


Bild 7 Kompakt-Reihe Lastrichtungsfaktor für KH30

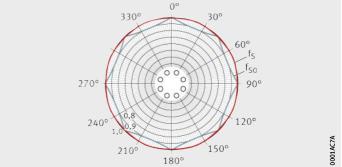
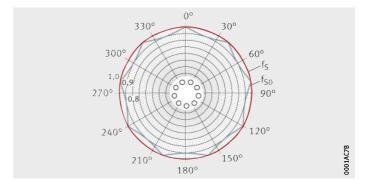
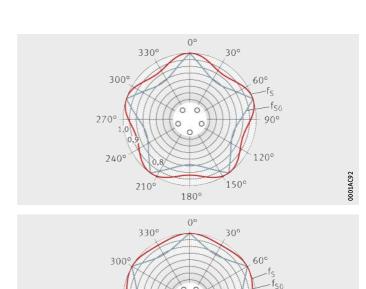




Bild 8 **Kompakt-Reihe** Lastrichtungsfaktor für KH40

Bild 9 **Kompakt-Reihe** Lastrichtungsfaktor für KH50

Tragfähigkeit und Lebensdauer

90°

120°

150°

Bild 10 Leichtbau-Reihe Lastrichtungsfaktor für KN12-B, KN16-B

Bild 11 Leichtbau-Reihe Lastrichtungsfaktor für KN20-B, KN25-B, KN30-B, KN40-B, KN50-B

180° 330° 30° 3009 60° _fso 90° 120° 240° 0001AC94 150° 210° 180°

240°

210°

Bild 12 Leichtbau-Reihe Lastrichtungsfaktor für KNO12-B, KNO16-B

00 330° 30° 300° 60° 270° 120° 0001AC95 150° 210° 180°

Bild 13 Leichtbau-Reihe Lastrichtungsfaktor für KNO20-B, KNO25-B, KNO30-B, KNO40-B, KNO50-B

Bild 14 Schwerlast-Reihe Lastrichtungsfaktor für KS12, KS16, KS20, KS25, KS30, KS40, KS50

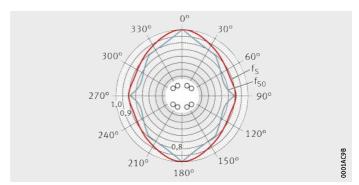
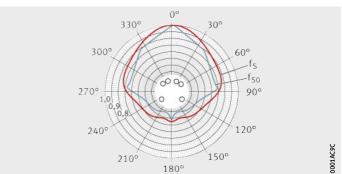



Bild 15 Schwerlast-Reihe Lastrichtungsfaktor für KS012, KS016

00

30°

0001AC9D

270°_{1,0} 60° 60° fs f_{so} 90° 90° 120° 120°

330°

Bild 16 Schwerlast-Reihe Lastrichtungsfaktor für KSO20, KSO25

330° 30° 30° 55° 55° 50° 90° 120° 120° 180° 180° 180°

Bild 17 Schwerlast-Reihe Lastrichtungsfaktor für KSO30, KSO40, KSO50

Tragfähigkeit und Lebensdauer

00 330° 30° 300° 60° f_{S0} 120° 150° 210 180° 00 330° 30°

Bild 18 Massiv-Reihe Lastrichtungsfaktor für KB12, KB16

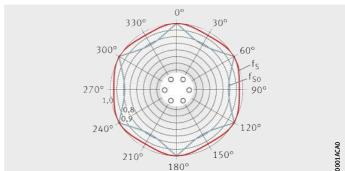


Bild 19 Massiv-Reihe Lastrichtungsfaktor für KB20, KB25, KB30, KB40, KB50

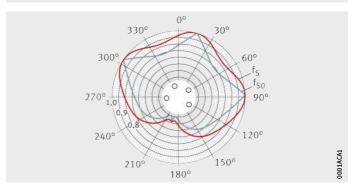


Bild 20 Massiv-Reihe Lastrichtungsfaktor für KB012, KB016

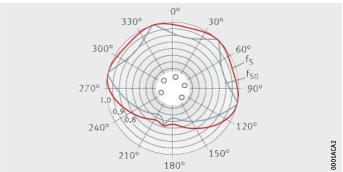
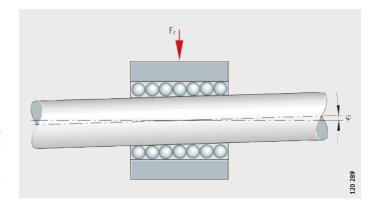


Bild 21 Massiv-Reihe Lastrichtungsfaktor für KBO20, KBO25, KBO30, KBO40, KBO50

Schiefstellung der Welle

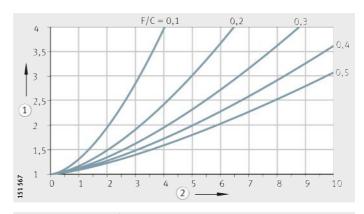

Laufqualität und Gebrauchsdauer der Linear-Kugellager werden durch die Schiefstellung der Welle beeinträchtigt. Deshalb sollten Führungen mit einer Welle mindestens zwei Lager haben, Führungen mit zwei Wellen mindestens drei Lager.

Lastfaktoren bei der Schiefstellung

Aufgrund von Wellendurchbiegungen lässt sich eine Schiefstellung nicht immer vermeiden, *Bild 22*. Liegt diese vor, sind Lastfaktoren für die Schiefstellung zu berücksichtigen, *Bild 23* und *Bild 24*, Seite 26.

$$\begin{split} P &= K_F \cdot F_r \\ P_0 &= K_{F0} \cdot F_r \\ P, P_0 & N \\ \text{Dynamisch oder statisch äquivalente Belastung} \\ K_F, K_{F0} & - \\ \text{Dynamischer oder statischer Lastfaktor für Schiefstellung,} \\ \textit{Bild 23} \text{ oder } \textit{Bild 24}, \text{ Seite 26} \\ F_r & N \\ \text{Maximale radiale Lagerlast} \\ C, C_0 & N \\ \text{Dynamische oder statische Tragzahl,} \end{split}$$

Bild 23 oder Bild 24, Seite 26.


 F_r = Radiale Belastung φ = Schiefstellung

 $\begin{array}{c} \textit{Bild 22} \\ \textit{Schiefstellung } \phi \; \textit{der Welle} \end{array}$

Tragfähigkeit und Lebensdauer

① Dynamischer Lastfaktor K_F ② Schiefstellung ϕ in Winkelminuten

Bild 23 Dynamischer Lastfaktor bei Schiefstellung der Welle

F/C₀ = 0,1 0,2 0,3 0,4 0,5

3,5

1
2
1,5
1
0 1 2 3 4 5 6 7 8 9 10

Bild 24 Statischer Lastfaktor bei Schiefstellung der Welle

Ausgleich von Winkelfehlern bei der Leichtbau- und Schwerlast-Reihe

Linear-Kugellager KN..-B, KNO..-B, KS und KSO und Linear-Kugellager-Einheiten mit diesen Lagern sind selbsteinstellend. Sie gleichen Schiefstellungen bis zu ± 30 Winkelminuten (KN..-B und KNO..-B) oder ± 40 Winkelminuten (KS und KSO) ohne Beeinträchtigung der Tragfähigkeit aus.

Linear-Kugellager werden häufig genutzt, wenn es auf hohe Positioniergenauigkeit und einen großen Wirkungsgrad ankommt. Deshalb müssen die Lager ruckfrei und nur mit niedriger Reibung laufen.

Besonders reibungsarm sind die Linear-Kugellager KN..-B, KNO..-B, KS, KSO, KB, KBS, KBO.

Reibungskoeffizient

Die gesamte Reibung ergibt sich aus der:

- Roll- und Gleitreibung in den Wälzkontakten (Gleitreibung bei Linear-Gleitlagern)
- Reibung in den Umlenkzonen und Rückführungen
- Schmierstoffreibung
- Dichtungsreibung.

Die Faktoren, von denen der Reibungskoeffizient abhängt, beeinflussen sich zum Teil auch gegenseitig, wirken in eine Richtung oder gegeneinander.

Reibungskoeffizient bei nicht abgedichteten Lagern

Die Reibungskoeffizienten bei nicht abgedichteten Linear-Kugellagern und Ölschmierung zeigt die Tabelle.

Bei Linear-Gleitlagern liegt der Reibungskoeffizient zwischen 0,02 und 0,2.

Baureihe und Reibungskoeffizient

Baureihe	Reibungskoeffizient
KH	0,003 - 0,005
KNB, KNOB	0,001 - 0,0025
KS, KSO	0,001 - 0,0025
KB, KBS, KBO	0,001 - 0,0025

Schmierung

Offene Linear-Kugellager sind nass oder trocken konserviert und können mit Fett oder Öl geschmiert werden. Das ölige Konservierungsmittel ist mit Schmierstoffen auf Mineralölbasis verträglich und mischbar, so dass in der Regel ein Auswaschen der Lager vor dem Einbau nicht notwendig ist.

Trockenkonservierte Lager müssen nach der Entnahme aus der Verpackung sofort befettet oder geölt werden.

Fettschmierung

Fettschmierung ist der Ölschmierung vorzuziehen, da das Fett in der Buchse haften bleibt und somit das Eindringen von Schmutz verhindert. Durch diesen Abdichtungseffekt werden die Wälzkörper vor Korrosion geschützt.

Zusätzlich ist der konstruktive Aufwand zur Realisierung einer Fettschmierung geringer als der zur Ölschmierung, da die Abdichtung weniger aufwändig gestaltet werden muss.

Aufbau geeigneter Schmierfette

Schmierfette für Linear-Kugellager haben folgenden Aufbau:

- Lithium- oder Lithiumkomplexseife
- Grundöl auf Mineralölbasis oder Poly-Alpha-Olefin (PAO)
- Besondere Verschleißschutzzusätze für Belastungen C/P < 8, gekennzeichnet mit "P" in der DIN-Bezeichnung KP2K-30
- Konsistenz gemäß NLGI-Klasse 2 nach DIN 51818.

Erstbefettung und Gebrauchsdauer

Erfahrungsgemäß wird die Gebrauchsdauer beim Einsatz der Lager in normalen Umgebungsbedingungen (C/P > 10), Raumtemperatur und v $\leq 0,6 \cdot v_{max}$ mit der Erstbefettung erreicht. Sollten diese Bedingungen nicht möglich sein, muss nachgeschmiert werden.

Abgedichtete Linear-Kugellager sind bei der Auslieferung bereits ausreichend gefettet, so dass in vielen Anwendungen Wartungsfreiheit erreicht wird.

Lager erstbefetten und nachschmieren

Die Erstbefettung und das Nachschmieren von Linear-Kugellagern ohne Dichtungen und Nachschmierbohrungen sind über die Welle vorzunehmen. Hierbei ist zu beachten, dass alle Wälzkörper im Umlauf mit Fett in Berührung kommen. Hierzu ist die Buchse während des Nachschmiervorgangs mindestens über die doppelte Lagerlänge zu verfahren.

Bei der Erstbefettung ist dem Lager bei montierter Welle so lange Schmierstoff zuzuführen, bis dieser am Lager austritt.

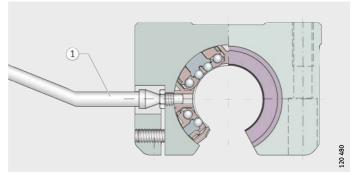
Bei den Linear-Kugellagern KH, KN..-B-PP-AS, KS..-PP-AS und PAB..-PP-AS ist das Nachschmieren durch Bohrungen oder Aussparungen im Halte- oder Außenring möglich.

Das Nachschmieren von Linearlagern und Linearlagergehäuseeinheiten ist im montierten Zustand der Welle auszuführen!

28 | **WF 1** Schaeffler Technologies

Nachschmierfrist

Die Nachschmierfrist ist abhängig von vielfältigen Einsatzbedingungen wie der Belastung, der Temperatur, der Geschwindigkeit, dem Hub, dem Schmierstoff, den Umgebungseinflüssen und der Einbaulage.


Genaue Schmierfristen sind durch Versuche unter Anwendungsbedingungen zu ermitteln!

Nachschmierung von Linear-Kugellagern in Gehäusen

Sind Linear-Kugellager im Gehäuse eingebaut, so können für die Nachschmierung spezielle Düsenrohre erforderlich sein, *Bild 1* und *Bild 2*. Bezugsquellen für Düsenrohre mit geeigneten Spitzmundstücken können bei uns angefragt werden.

Bild 1 Düsenrohr

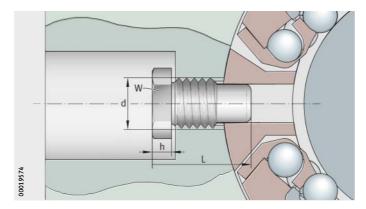
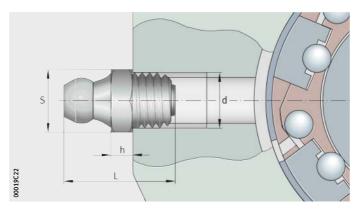

1) Düsenrohr

Bild 2 Nachschmierung mit Düsenrohr

Schmierung

Schmiernippel für Gehäuse

Schmiernippel für Gehäuse mit KS zeigt *Bild 3*, verwendbare DIN-Schmiernippel für Gehäuse mit KN..-B zeigen *Bild 4* und *Bild 5*, Seite 31, für die anderen Gehäuse, *Bild 6*, Seite 31. Die Abmessungen sind in den Tabellen angegeben.



NIP..MZ

Bild 3 Schmiernippel für Schwerlast-Reihe KS

Schmiernippel

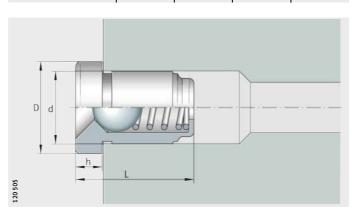
Schmiernippel	Schlüssel- weite	Abmessungen		
	W	d	L	h
		mm	mm	mm
NIP4MZ	5	M4	7,7	1,5
NIP5MZ	6	M5	11,1	2
NIP6MZ	7	M6	14,8	2,5

NIP DIN 71412

Bild 4 Schmiernippel DIN 71412 Form A für Leichtbau-Reihe KN..-B

Kegelschmiernippel

Kegelschmiernippel	Abmessungen			
	S h13 mm	d mm	L	h j16 mm
NIP DIN 71412-AM6	7	M6	16	3
NIP DIN 71412-AM8×1	9	M8×1	16	3



NIP DIN 3405

Bild 5 Alternativ Schmiernippel DIN 3405 Form A für Leichtbau-Reihe KN..-B

Trichterschmiernippel

Trichterschmiernippel	Abmessungen			
	S h13 mm	d mm	L	h j16 mm
NIP DIN 3405-AM6	7	M6	9,5	3
NIP DIN 3405-AM8×1	9	M8×1	9,5	3

NIPA

Bild 6 Schmiernippel für Kompakt-Reihe KH, Massiv-Reihe KB, Gleitlager-Reihe PAB

Schmiernippel

Schmiernippel	Abmessungen			
	D	d	L	h
	mm	mm	mm	mm
NIPA1	6	4	6	1,5
NIPA2	8	6	9	2

Schmierung

Einsatz in besonderen Umgebungen

In Vakuum-Anwendungen sind Schmierstoffe erforderlich, die geringe Verdampfungsraten aufweisen, um die Vakuumatmosphäre aufrecht zu erhalten.

Im Lebensmittelbereich und Reinräumen werden ebenfalls besondere Anforderungen an Schmiermittel bezüglich Emission und Verträglichkeit gestellt. Bei solchen Umgebungsbedingungen bitte rückfragen.

Ölschmierung

Ölschmierung ist zu bevorzugen, wenn ein Wärmeabtransport und Schmutzaustrag durch das Schmiermittel gewünscht wird.

Diesem Vorteil steht der erhöhte konstruktive Aufwand gegenüber (Schmierstoffzuführung, Abdichtung).

Geeignete Schmieröle

Je nach Belastungsfall empfehlen wir folgende Schmieröle:

- Bei niedrigen bis mittleren Belastungen (C/P > 15):
 - Hydrauliköle HL nach DIN 51524 und Schmieröle CL nach DIN 51517 im Viskositätsbereich ISO-VG 10 bis ISO-VG 22
- Bei hohen Belastungen (C/P < 8):
 - Hydrauliköle HLP nach DIN 51524 und Schmieröle CLP nach DIN 51517 im Viskositätsbereich ISO-VG 68 bis ISO-VG 100.

32 | **WF 1** Schaeffler Technologies

Die guten Laufeigenschaften der Wellenführungen hängen nicht nur von den Lagern ab. Auch die Form- und Lagetoleranzen der Anschlusskonstruktion haben einen großen Einfluss darauf.

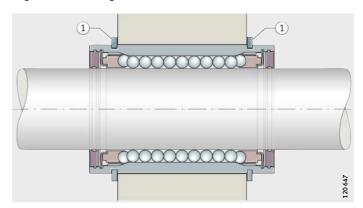
Je genauer die Anschlusskonstruktion gefertigt ist und je exakter montiert wurde, desto besser sind die Laufeigenschaften.

Befestigung Linear-Kugellager KH

Linear-Kugellager KH und KH..-PP werden in die Gehäusebohrung gepresst. Sie sind damit radial und axial fixiert. Zusätzliche Maßnahmen sind nicht erforderlich.

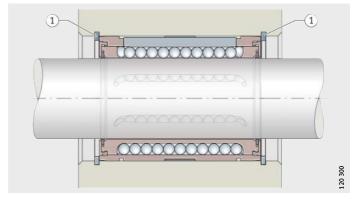
Linear-Kugellager KN..-B, KB, KS und Gleitlager PAB

Linear-Kugellager KN..-B, KB, KS und Gleitlager PAB sind axial festzusetzen.


Linear-Kugellager KB und Gleitlager PAB können mit Sicherungsringen oder durch die Anschlusskonstruktion festgesetzt werden, *Bild 1* bis *Bild 3*, Seite 34.

Linear-Kugellager KN..-B und KS können festgesetzt werden nach *Bild 2* und *Bild 3*, Seite 34.

Linear-Kugellager KN..-B können auch mit einer Schraube gesichert werden, *Bild 4*, Seite 34.


İ

Die Baureihen KN..-B und KS sollten nicht mit Wellensicherungsringen nach *Bild 1* gesichert werden! Das kann die Funktion des Lagers beeinträchtigen!

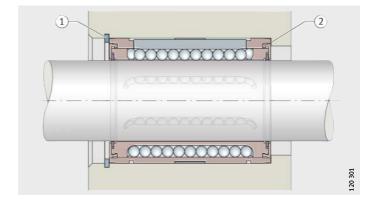
(1) Sicherungsringe

Bild 1 Sicherungsringe in den Nuten des Lagers

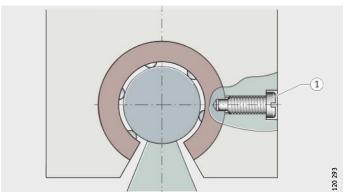
 ${\small \textcircled{1} Sicherungsringe}\\$

Bild 2 Sicherungsringe in der Gehäusebohrung

Gestaltung der Lagerung


Linear-Kugellager KNO..-B, KBO und Gleitlager PABO

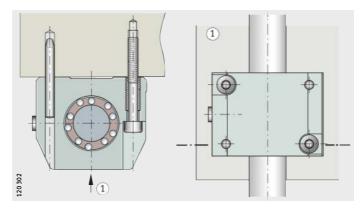
Linear-Kugellager KNO..-B, KBO und Gleitlager PABO sind axial und radial zu befestigen.


Diese Lager haben außen eine Fixierung. Eine Schraube mit Zapfen ist zur Sicherung zu bevorzugen, *Bild 4*. Geeignet sind auch Gewindestifte.

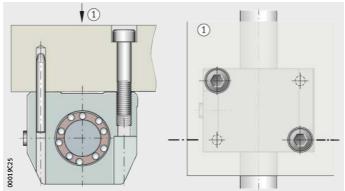
Die Fixierschraube darf das Lager nicht verformen! Die Schraube ist gegen Lösen zu sichern!

- Sicherungsring
 Gehäuseschulter
- Bild 3 Sicherungsring und Gehäuseschulter

1) Sicherungsschraube mit Zapfen


Bild 4 Sicherung des Lagers mit einer Schraube

Linear-Kugellager-Einheiten


Linear-Kugellager-Einheiten und Linear-Gleitlager-Einheiten werden in oder durch Befestigungsbohrungen hindurch angeschraubt, *Bild 5* und *Bild 6*.

Ein Verstiften der Einheiten ist nur in seltenen Fällen notwendig, durch Aufbohren der Zentrierbohrungen jedoch einfach möglich.

1 Untersicht

Bild 5
Befestigung einer Einheit von unten

① Draufsicht

Bild 6
Befestigung einer Einheit von oben

Gestaltung der Lagerung

Abdichtung

Saubere Laufbahnen verhindern den frühzeitigen Ausfall von Welle und Lager. Deshalb sollte die Lagerstelle immer abgedichtet sein.

Spalt- oder schleifende Dichtung

Die Dichtungen der Baureihen zeigt die Tabelle.

Spaltdichtungen schützen die Lager vor grobem Schmutz. Schleifende Dichtungen schützen vor feinem Schmutz und halten das Fett im Lager.

Linear-Kugellager und Linear-Gleitlager mit schleifenden Dichtungen haben das Nachsetzzeichen PP, Beispiel KH..-PP.

Befinden sich Lager und Welle in sehr aggressiver Umgebung, ist es empfehlenswert, die Führung zusätzlich mit Faltenbälgen oder Teleskopabdeckungen zu schützen!

Abdichtung der Lager und Einheiten

Baureihe ¹⁾	Dichtung				
	offen	Spaltdichtung	schleifende Dichtung		
KH	•	-	•		
KNB, KNOB	-	•	•		
KS, KSO	-	•	•		
KB, KBO	_	•	•		
PAB, PABO	-	_	•		

[•] Lieferbare Ausführung.

 $^{^{1)}\,}$ Alle Linearlager-Einheiten haben schleifende Dichtungen.

Betriebsspiel

Toleranz und Betriebsspiel

Das Betriebsspiel für Linearlager wird durch die Wellen- und Gehäusetoleranz festgelegt, siehe Tabellen, Seite 38.

Das Betriebsspiel von Linearlager-Einheiten wird entweder durch die Welle festgelegt oder bei geschlitzten Gehäusen mit der Einstellschraube eingestellt.

Bei nicht starren Gehäusen sind Versuche notwendig, um mit den Gehäuse- und Wellentoleranzen das Betriebsspiel einzustellen! Zum Einstellen des Betriebsspiels, siehe Seite 43!

Toleranz und Betriebsspiel

Linearlager und	Kurzzeichen	Tolerar	ız	Betriebsspiel
Linearlager- Einheiten		Welle	Bohrung	
Kompakt-Reihe	KH	siehe T	abelle, Sei	te 38
	KGHK, KTHK	h6	_	normal
Leichtbau-Reihe	KNB, KNOB	h6	H7	spielfrei
Schwerlast-Reihe	KS, KSO	h6	H7	spielfrei
	KGSNG, KTSG, KGSNO, KTSO, KGSC, KTFS	h6	-	leichte Vorspannung
	KGSNS, KTSS, KGSNOS, KTSOS, KGSCS	-	-	mit Schraube einstellbar
Massiv-Reihe	KB	siehe T	abelle, Sei	te 38
	KBS, KBO			_
	KGB, KGBA, KTB, KGBO, KTBO	h6	-	siehe Tabelle, Seite 38
	KGBS, KGBAS, KGBAO	_	_	mit Schraube einstellbar
Gleitlager-Reihe	PAB, PABO	h7	H7	normal
	PAGBA, PAGBAO	h7	_	normal

Betriebsspiel

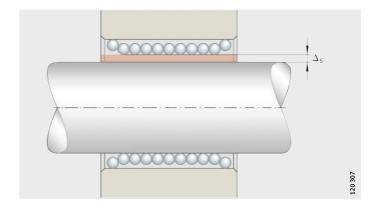
Einbautoleranzen und **Betriebsspiel**

Das theoretisch mögliche Betriebsspiel für die einzelnen Baureihen zeigen die folgenden Tabellen und Bild 1.

Betriebsspiel für KH, KN..-B, KNO..-B

Einbau	toleranz	Betriebsspiel	
Welle	Bohrung	alle Größen	
h6	H7, K7	normales Betriebsspiel	Stahl/Alu
j5	H6, K6	Betriebsspiel kleiner als normal	Stahl/Alu

Betriebsspiel für KS, KSO


Einbaut	toleranz	Baugröße und Betriebsspiel						
Welle	Bohrung	12 μm	16 μm	20 μm	25 μm	30 μm	40 μm	50 μm
h6	Н6	+36 -8	+34 -10	+37 -12	+34 -15	+29 -20	+33 -22	+30 -25
h6	H7	+44 -8	+42 -10	+46 -12	+43 -15	+38 -20	+44 -22	+41 -25
h6	JS6	+29 -14,5	+27,5 -16,5	+29 -20	+26 -23	+21 -28	+23,5 -31,5	+20,5 -34,5

Betriebsspiel für KB

Einbau	toleranz	Baugröße und Betriebsspiel						
Welle	Bohrung				50 μm			
h6	H6 (H7)	+19	+20 -1	+22	+24 -1	+24	+29	+29

Betriebsspiel für KBS, KBO

Einbau	toleranz	Baugröße und Betriebsspiel						
Welle	Bohrung	12	16	20	25	30	40	50
		μm	μm	μm	μm	μm	μm	μm
h6	H6	+50 0	+51 -1	+60 -1	+62 -1	+62 -1	+74 -2	+74 -2
h6	H7	+58 0	+59 -1	+69 -1	+71 -1	+71 -1	+85 -2	+85 -2
h6	JS6	+43,5 -6,5	+44,5 -7,5	+52 -9	+54 -9	+54 -9	+64,5 -11,5	+64,5 -11,5

 Δ_s = Betriebsspiel

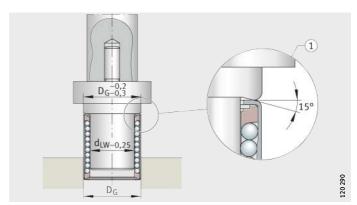
Bild 1 Betriebsspiel

Einbau

Die Lager sollen erst unmittelbar vor der Montage aus der Verpackung genommen werden. Trockenkonservierte Lager sind nach der Entnahme sofort gegen Korrosion zu schützen.

Der Montageplatz und die Anschlusskonstruktion müssen sauber sein! Schmutz verschlechtert die Genauigkeit und verkürzt die Gebrauchsdauer der Führungen!

Die Lager dürfen nicht verkantet werden!


Bei abgedichteten Lagern mit Segment-Ausschnitt ist unbedingt darauf zu achten, dass die Enden der Dichtlippen nicht umgestülpt werden (Packzettel beachten)!

Einbau der Lager Linear-Kugellager KH

Linear-Kugellager KH werden mit einem Einpressdorn in die Gehäusebohrung gepresst, *Bild 1*. Die Dornmaße nach *Bild 1* sind einzuhalten.

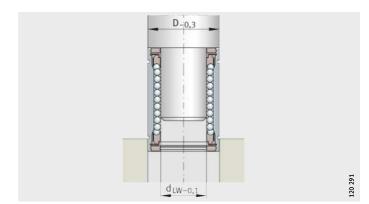
Die beschriftete Stirnseite des Linear-Kugellagers sollte am Bund des Einpressdorns anliegen.

Linear-Kugellager lassen sich leichter einbauen, wenn ihr Außenmantel eingefettet ist.

 d_{LW} = Wellendurchmesser D_G = Gehäusebohrung

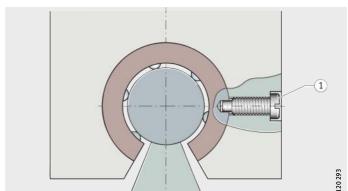
(1) Einzelheit

Bild 1 Einpressen der Linear-Kugellager KH


Einbau

Linear-Kugellager KN..-B, KNO..-B, KB, KBS, KBO, KS, KSO und Linear-Gleitlager PAB, PABO Kleinere Lager dieser Baureihen lassen sich von Hand in die Gehäusebohrung schieben. Bei größeren Lagern ist es zweckmäßig, einen Montagedorn zu verwenden, Bild 2.

Anschließend werden die Lager mit Sicherungsringen oder einer Schraube gesichert, Bild 3.



Bei allen Lagern, die mit einer Schraube gesichert werden, ist darauf zu achten, dass die Schraube das Lager nicht verformt und die Schraube gegen Lösen gesichert ist!

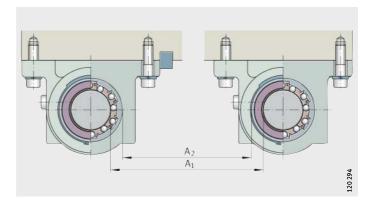
 $d_{LW} = Wellendurchmesser$

Bild 2 Einbau der Linear-Kugellager mit Montagedorn

(1) Sicherungsschraube mit Zapfen

Bild 3 Sicherung des Lagers mit einer Schraube

Ausrichten der Lager und Wellen


Hintereinander angeordnete Lager

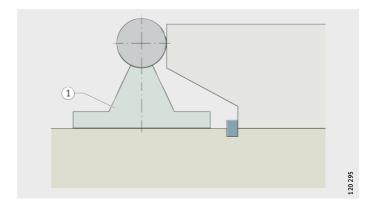
Hintereinander angeordnete Lager sollten mit einer durchgehenden Welle ausgerichtet, gegen einen Anschlag gesetzt und dann festgeschraubt werden.

Parallel angeordnete Lager

Parallel angeordnete Lager richtet man aus, indem man den Abstand zwischen den Wellen (A_1) oder zwischen den Lager-Außendurchmessern (A_2) misst, $Bild\ 4$. Auch mit Abstandsstücken lässt sich dieser Abstand festlegen.

Die erste Welle wird festgelegt (Bezugswelle) und angeschraubt. Die zweite Welle richtet man aus, indem man den Schlitten verfährt und so den Abstand herstellt.

A₁ = Abstand zwischen den Wellen A₂ = Abstand zwischen den Lager-Außendurchmessern


> Bild 4 Ausrichten parallel angeordneter Lager

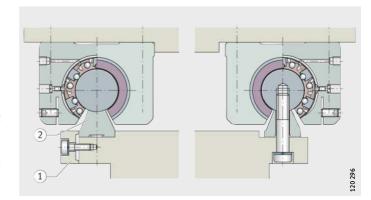
Einbau

Sehr lange Führungen mit unterstützter Welle

Bei sehr langen Führungen mit unterstützter Welle ist zuerst eine Tragschiene über die Welle auszurichten und schrittweise festzuschrauben (Bezugswelle), *Bild 5*.

Anschließend vorgehen wie im Abschnitt Parallel angeordnete Lager beschrieben.

1) Tragschiene


Bild 5 Ausrichten einer Tragschiene über die Welle

Führungen mit spielfreien oder vorgespannten Lagern

Es sollte nur eine Reihe hintereinander liegender Lager spielfrei eingestellt oder vorgespannt werden. Die parallel liegenden Lager sollen ein größeres Betriebsspiel haben.

Parallele Tragschienen

Die Bezugsschiene gegen einen Anschlag klemmen, Bild 6.

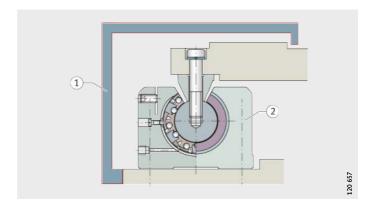
1 Anschlag2 Bezugsschiene

Bild 6 Festklemmen der Bezugsschiene bei zwei Tragschienen TSUW

Betriebsspiel einstellen Lager spielfrei einstellen

Bei Linear-Kugellagern KBS und geschlitzten Gehäusen kann das Betriebsspiel eingestellt werden. Dazu muss die Schraube so weit zugestellt werden, bis zwischen Welle und Lager ein Verdrehwiderstand spürbar ist.

Eingestelltes Lager nicht mehr auf der Welle verdrehen!


Vorspannung einstellen

Vorgespannte Lager stellt man spielfrei auf einer Meisterwelle ein, die um das Vorspannungsmaß kleiner als die Laufwelle ist.

Hängende Anordnung des Führungssystems

Bei hängender Anordnung des Führungssystems wird eine Absturzsicherung (1) empfohlen, *Bild 7*.

- 1 Absturzsicherung
- ② Einbaulage 180°

Bild 7 Hängende Wellenführung mit Absturzsicherung

Kompakt-Reihe Leichtbau-Reihe Schwerlast-Reihe Massiv-Reihe Gleitlager-Reihe

		Seite
Matrix	Matrix zur Vorauswahl der Linearlager und Linearlager-Einheiten	46
Produktübersicht	Linearlager und Linearlager-Einheiten Kompakt-Reihe Leichtbau-Reihe Schwerlast-Reihe Massiv-Reihe Gleitlager-Reihe	48 48 48 49 50 51
Merkmale	Linearlager	52
	Linearlager-Einheiten	53
	Abdichtung	54
	Schmierung	55
	Betriebstemperatur	55
	Anwendungsbereiche	55
	Nachsetzzeichen	55
	Kompakt-Reihe	56
	Leichtbau-Reihe	58
	Schwerlast-Reihe	60
	Massiv-Reihe	62
	Gleitlager-Reihe	64
Maßtabellen	Kompakt-Reihe, Linear-Kugellager	67
	Kompakt-Reihe, Linear-Kugellager-Einheiten	68
	Leichtbau-Reihe, Linear-Kugellager	74
	Schwerlast-Reihe, Linear-Kugellager	76
	Schwerlast-Reihe, Linear-Kugellager-Einheiten	78
	Massiv-Reihe, Linear-Kugellager	90
	Massiv-Reihe, Linear-Kugellager-Einheiten	92
	Gleitlager-Reihe, Linear-Gleitlager	100

Matrix zur Vorauswahl der Linearlager und Linearlager-Einheiten

Linearlager und Linearlager-	für Wellendurchmesser d _{LW} in mm					
Einheiten	06	08	10	12	14	16
Kompakt-Reihe						
KH, KHPP	•	•	•	•	•	•
KGHKPP-AS	•	•	•	•	•	•
KTHKPP-AS	-	_	_	•	_	•
KGHAPP	-	_	_	_	_	•
Leichtbau-Reihe	_	<u> </u>	_			
KNB	Ī-	I-	_	•	-	•
KNB-PP KNOB						
KNOB-PP						
Schwerlast-Reihe		<u> </u>	<u> </u>			
KS, KSPP	1_	I_	_	•		•
KSO, KSOPP	_	_	_	•	_	•
KGSNGPP-AS	_	_	_	•	_	•
KGSNSPP-AS	_	_	_	•	_	•
KTSGPP-AS	-	_	_	•	_	•
KTSSPP-AS	_	_	_	•	_	•
KGSNOPP-AS	1_	_	_	•	_	•
KGSNOSPP-AS	1_	_	_	•	_	•
KTSOPP-AS	_	_	_	•	_	•
KTSOSPP-AS	 -	l_	_	•	_	•
KGSCPP-AS	_	_	_	•	_	•
KGSCSPP-AS	1_	_	_	•	_	•
KTFSPP-AS	1-	-	_	•	_	•
Massiv-Reihe						
KB, KBS, KBO	T_	I –	l –	•	 -	•
KBPP, KBSPP						
KBOPP KBPP-AS						
KBSPP-AS						
KBOPP-AS KGBPP-AS						
KGBSPP-AS						
KGBOPP-AS						
KGBAPP-AS						
KGBASPP-AS KGBAOPP-AS						
KFBB-PP-AS						
KTBPP-AS						
KTBOPP-AS						
Gleitlager-Reihe						
PABPP-AS	-	-	-	•	-	•
PABOPP-AS PAGBAPP-AS						
PAGBAOPP-AS						

Bedeutung der Symbole +++ sehr gut

- ++ gut
- + befriedigend
- lieferbar für Wellendurchmesser

Linearlager KH, KN..-B, KNO..-B, KS, KSO mit dem Nachsetzzeichen PP sind beidseitig abgedichtet.

Linearlager mit den Nachsetzzeichen PP-AS sind beidseitig abgedichtet und nachschmierbar.

					A C''1		I					
20	25	30	40	50	Ausführung ge- schlossen	Segment- Ausschnitt	Eigenschaf Merkmal	Belast- barkeit	Präzi- sion	Winkel- ausgleich	ein- stell-	Be- schreibung
											bar	Seite
				1_	Lau		1					leo e :
•	•	•	•	•	КН	-	niedrige Bauhöhe	+	+	_	_	53, 56
•	•	•	•	•			- Duamonio					
•	•	•	•	•								
•	•	•	•	-								
•	•	•	•	•	KNB	KNOB	robust	+	+	bis ±30	alle	53, 58
									<u> </u>			
•	•	•	•	•	KS	KSO	hoch	++	++	bis ±40	alle	53, 60
•	•	•	•	•			tragfähig			2.2 = 40		12,00
•	•	•	•	•	-							
•	•	•	•	•	-							
•	•	•	-	-								
			- -	- -								
•	•	•			_							
•	•	•	•	•								
•	•	•	•	•								
•	•	•	_	-								
•	•	•	_	_								
•	•	•	•	•								
•	•	•	•	•								
•	•	•	-	-								
									•			
•	•	•	•	•	КВ	KBO	hoch	+	+++	_	KBS	53, 62
							präzise					
					DAD	DARO	Cloitlagg	1	1			E2 6/:
•	•	•	•	•	PAB	PABO	Gleitlager	+++	++	_	_	53, 64

Produktübersicht Linearlager und Linearlager-Einheiten

Kompakt-Reihe

Linear-Kugellager mit und ohne Dichtung

Merkmale, siehe Seite 56

KH, KH..-PP

Geschlossene Einheiten Lager in Einzeloder Tandem-Anordnung

KGHK..-B-PP-AS

KTHK..-B-PP-AS

Geschlossene Einheit

KGHA..-PP

Leichtbau-Reihe

Linear-Kugellager geschlossen oder mit Segment-Ausschnitt mit und ohne Dichtung

Merkmale, siehe Seite 58

KN..-B, KN..-B-PP

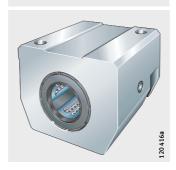
KNO..-B, KNO..-B-PP

Schwerlast-Reihe

Linear-Kugellager geschlossen oder mit Segment-Ausschnitt mit und ohne Dichtung

Merkmale, siehe Seite 60

KS, KS..-PP


KSO, KSO..-PP

------D

Geschlossene Einheiten Gehäuse geschlosssen oder geschlitzt Lager in Einzeloder Tandem-Anordnung

KGSNG..-PP-AS, KGSNS..-PP-AS

KTSG..-PP-AS, KTSS..-PP-AS

Einheiten mit Segment-Ausschnitt Gehäuse nicht geschlitzt oder geschlitzt Lager in Einzeloder Tandem-Andordnung

KGSNO..-PP-AS, KGSNOS..-PP-AS

KTSO..-PP-AS, KTSOS..-PP-AS

PP-AS, -PP-AS

Lager in Einzeloder Tandem-Anordnung Gehäuse nicht geschlitzt oder geschlitzt Einheit mit Zentrierbund

KGSC..-PP-AS, KGSCS..-PP-AS

KTFS

Produktübersicht Linearlager und Linearlager-Einheiten

Massiv-Reihe

Linear-Kugellager geschlossen oder mit Schlitz mit Segment-Ausschnitt mit und ohne Dichtung

Merkmale, siehe Seite 62

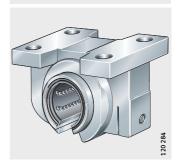
KB, KB..-PP, KB..-PP-AS, KBS, KBS..-PP, KBS..-PP-AS

KBO, KBO ..- PP, KBO ..- PP-AS

Geschlossene Einheiten Gehäuse geschlossen oder geschlitzt

KGB..-PP-AS, KGBS..-PP-AS

KGBA..-PP-AS, KGBAS..-PP-AS



Einheiten mit Segment-Ausschnitt Gehäuse nicht geschlitzt oder geschlitzt

KGBO..-PP-AS

KGBAO..-PP-AS

Geschlossene Einheiten oder Einheiten mit Segment-Ausschnitt Lager in Tandem-Anordnung

KTB..-PP-AS

KTBO..-PP-AS

Geschlossene Einheit Gehäuse mit Flansch

KFB..-B-PP-AS

Gleitlager-Reihe

Linear-Gleitlager geschlossen oder mit Segment-Ausschnitt abgedichtet

Merkmale, siehe Seite 64

PAB..-PP-AS

PABO..-PP-AS

Linear-Gleitlager-Einheiten geschlossen oder mit Segment-Ausschnitt

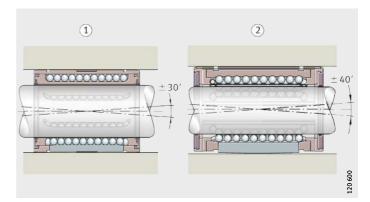
PAGBA..-PP-AS

PAGBAO..-PP-AS

Merkmale

Linearlager und Linearlager-Einheiten gibt es als Kompakt-, Leichtbau-, Schwerlast-, Massiv- und Gleitlager-Reihe. Die Lager nehmen hohe Belastungen bei relativ niedrigem Gewicht auf und ermöglichen Linearführungen mit unbegrenzten Verfahrwegen.

Jede Baureihe verfügt über ganz spezifische Eigenschaften, die sie für bestimmte Anwendungen besonders prädestiniert. Das können beispielsweise Forderungen nach dem Ausgleich von Fluchtungsfehlern, nach reibungsarmem Lauf, nach hohen Beschleunigungen und Verfahrgeschwindigkeiten oder nach langer Gebrauchsdauer sein.


Das nach dem Baukastensystem aufgebaute und erweiterte Programm stellt für jede Anforderung die technisch und wirtschaftlich beste Lösung für Lagerungen mit Wellenführungen zur Verfügung.

Linearlager

Linear-Kugellager und -Gleitlager sind geschlossen oder offen. Die offene Ausführung hat einen Segment-Ausschnitt und ist für unterstützte Wellen vorgesehen. Bei mehreren Baureihen kann in Verbindung mit dem entsprechenden Gehäuse das Radialspiel für spielfreie oder vorgespannte Führungen eingestellt werden.

Ausgleich von Fluchtungsfehlern

Fluchtungsfehler können durch Toleranzfehler, Montagefehler oder Ungenauigkeiten der Anschlusskonstruktion entstehen. Linear-Kugellager der Baureihen KN..-B und KNO..-B gleichen statische Fluchtungsfehler bis $\pm 30'$, Linear-Kugellager der Baureihen KS und KSO bis $\pm 40'$ aus, $Bild\ 1$.

① KN..-B ② KS

Bild 1 Ausgleich von Fluchtungsfehlern KN..-B und KS Durch die Selbsteinstellung laufen die Kugeln störungsfrei in die belastete Zone ein. Gleichzeitig ist die Lastverteilung über die gesamte Kugelreihe gleichmäßiger. Das führt zu einem ruhigeren Lauf, lässt höhere Beschleunigungen zu und verhindert eine Überlastung der einzelnen Kugeln.

In Summe ergibt das höher realisierbare Belastungen und eine längere Gebrauchsdauer der Lager; gegebenenfalls kann sogar die Anschlusskonstruktion kleiner und kostengünstiger dimensioniert werden.

Zur vollen Nutzung der Tragzahlen nach Maßtabelle muss die Wellenlaufbahn gehärtet (670 HV + 165 HV) und geschliffen sein! Angaben dazu im Kapitel Gestaltung der Lagerung berücksichtigen, Seite 33!

Linearlager-Einheiten

Linear-Kugellager und -Gleitlager werden in Verbindung mit INA-Gehäusen auch als komplette Lagereinheiten geliefert. Eine radiale Befestigungsschraube fixiert das Lager im Gehäuse gegen axiale Verschiebung.

Die Gehäuse bestehen aus einer steifen und hochfesten Aluminium-Legierung, die die volle Tragfähigkeit der montierten Lager ermöglicht. Bei der Massiv-Reihe gibt es auch Gehäuse aus Druckguss.

Durch die vergleichsweise niedrige Gesamtmasse eignen sich die Einheiten damit besonders für gewichtsreduzierte Konstruktionen mit hohen Belastungen sowie wenn höhere Beschleunigungen und Verfahrgeschwindigkeiten gefordert sind.

Einfache Befestigung

Gewinde- oder Senkbohrungen im Gehäuse ermöglichen ein leichtes Verschrauben mit der Anschlusskonstruktion, wenn erforderlich auch von unten.

Zum schnellen Ausrichten haben die Gehäuse eine Anschlagkante. Dadurch wird vermieden, dass sich die Linearlager beim Einbau der Gehäuse verspannen.

Zentrierbohrungen erlauben das schnelle, zusätzliche Verstiften der Gehäuse mit der Umgebungs-Konstruktion.

Schaeffler Technologies

WF 1

Gehäuse-Ausführungen Die Gehäuse gibt es geschlossen, mit Segment-Ausschnitt, offen,

geschlitzt und als Tandem-Ausführung (ohne und mit Zentrierbund).

Geschlossen Bei dieser Variante sind Lager und Gehäuse geschlossen.

Damit lassen sich auf einfache Weise Präzisions-Standard-

Führungen mit einem festen Hüllkreis realisieren.

Mit Segment-Ausschnitt Offene Ausführungen mit Segment-Ausschnitt werden eingesetzt,

wenn bei langen Führungen die Welle unterstützt werden muss und

die Lagerung sehr steif sein soll.

Geschlitzt Geschlossene Ausführungen und Ausführungen mit Segment-

Ausschnitt werden in mehreren Baureihen auch geschlitzt geliefert. Geschlitzte Varianten eignen sich für spielfreie oder vorgespannte Führungen. Das Betriebsspiel wird dabei mit einer Stellschraube

eingestellt.

Tandem Bei der Tandem-Version sind zwei Linear-Lager montiert.

Dadurch sind die Einheiten besonders tragfähig.

Tandem-Kugellager-Einheiten gibt es geschlossen und offen. Beide Varianten werden in der genannten Ausführung auch

geschlitzt geliefert.

Mit Zentrierbund Für spezielle Anwendungen gibt es eine Tandem-Version mit

Zentrierbund für Aufnahmebohrungen nach H7.

Sehr wirtschaftlich Durch die Serienfertigung in hohen Stückzahlen sind die

kompletten Einheiten preislich meist erheblich wirtschaftlicher

als Kunden-Eigenkonstruktionen.

Abdichtung Die Lager gibt es offen und beidseitig mit schleifenden Dichtungen

(Nachsetzzeichen PP). Die Linearlager vom Typ KH, KN..-B und KB haben stirnseitig Dichtungen mit zwei Dichtlippen; die äußere verhindert das Eindringen von Schmutz, die innere hält den Schmierstoff im Lager. Die Linearlager vom Typ KS haben schleifende Dich-

tungen mit einer Dichtlippe.

Schmierung

Durch die Erstbefettung mit einem hochwertigen Schmierfett und das integrierte Schmierstoff-Reservoir sind die Linearlager für viele Anwendungen wartungsfrei; sie können bei Bedarf jedoch nachgeschmiert werden.

Linear-Kugellager sind je nach Ausführung über die Durchbrüche im Außenring oder radiale Bohrungen, die in der Lagermitte angeordnet sind, schmierbar.

Bei den Einheiten erfolgt die Schmierung über separate Schmiernippel im Gehäuse; die Fixierung des Lagers im Gehäuse und die Nachschmier-Vorrichtungen sind damit voneinander getrennt.

Betriebstemperatur

Lager und Gehäuse können bei Betriebstemperaturen von $-30\,^{\circ}$ C bis $+80\,^{\circ}$ C eingesetzt werden.

Anwendungsbereiche

Die Tabelle zeigt die Anwendungsbereiche für Linearlager.

Sind die Abhängigkeiten von Lagergröße und -ausführung, Belastung, Betriebsspiel, Lagerbefestigung und Schmierung geprüft, können im Einzelfall höhere Werte möglich sein.

In diesem Fall bitte Rücksprache halten.

Linearlager-Einheiten sind entsprechend dem eingebauten Linearlager einzuordnen!

Dynamische Werte der Linearlager

Beschleunigung,	Baureihe der Linearlager						
Geschwindigkeit	KH	KNB	KB	KS	PAB		
Beschleunigung in m/s ²	50	50	50	100	50		
Geschwindigkeit in m/s	2	bis 5	bis 5	bis 5	bis 3		

Bei Linearkugellagern mit Dichtung, Nachsetzzeichen PP, sind Geschwindigkeiten bis 2 m/s zulässig.

Nachsetzzeichen

Nachsetzzeichen der lieferbaren Ausführungen, siehe Tabelle.

Lieferbare Ausführungen

Nachsetz- zeichen	Beschreibung	Ausführung
PP	beidseitig Lippendichtung	Standard
PPL	Längsdichtungen bei Lagern mit Segment-Ausschnitt	auf Anfrage
AS	Lager und Einheit nachschmierbar	Standard

Kompakt-Reihe Linear-Kugellager KH und Linear-Kugellager-Einheiten der Kompakt-

Reihe sind radial bauraumklein und besonders preisgünstig. Ihre niedrige radiale Bauhöhe favorisiert sie damit automatisch für Anwendungen, bei denen nur ein geringer radialer Bauraum

zur Verfügung steht.

Durch die geschlossene Ausführung eignen sie sich zum Einsatz

auf Wellen.

Linear-Kugellager Die Lager haben einen durchbrochenen Außenring. In diesem ist ein

Kugelkranz mit Kunststoffkäfig integriert. Der Außenring ist spanlos geformt und gehärtet. Die Kugeln laufen in den Durchbrüchen des

Außenrings zurück.

Abdichtung Die Lager gibt es offen und beidseitig mit Lippendichtung

(Nachsetzzeichen PP). Die stirnseitigen Dichtungen haben zwei Dichtlippen, wobei die äußere das Eindringen von Schmutz verhindert und die innere den Schmierstoff im Lager hält.

Linear-Kugellager-Einheiten Linear-Kugellager-Einheiten der Kompakt-Reihe gibt es mit

einem integrierten Lager sowie in der besonders tragfähigen

Tandem-Ausführung mit zwei Lagern.

Für die Gehäuse wird hochfestes Aluminium verwendet.

Korrosionsschutz Die Gehäuse sind zweiteilig und aus Corrotect[®]-beschichtetem

Stahlblech. Lager und Gehäuseteile werden lose verpackt. Das Lager erhält seinen Festsitz beim Einbau im Gehäuse.

Weitere Informationen Weitere Informationen finden Sie auf folgenden Seiten:

■ Maßtabellen, siehe Seite 67

■ Wellen, siehe Seite 104

■ Tragschienen, siehe Seite 128

■ Zubehör, siehe Seite 144.

Linear-Kugellager und Linear-Kugellager-Einheiten der Kompakt-Reihe

Baureihe ¹⁾	Merkmal
KH	 Linear-Kugellager nicht abgedichtet
KHPP	Linear-Kugellager beidseitig Lippendichtung
KGHKPP-AS	geschlossen nachschmierbar
KTHKPP-AS	geschlossen Tandem-Ausführung nachschmierbar
KGHAPP	Einheit geschlossen

 $[\]overline{\mbox{Bei Nach}}$ Bei Nachsetzzeichen PP Lager beidseitig mit Lippendichtung.

Leichtbau-Reihe

Die Leichtbau-Reihe gibt es als Linear-Kugellager KN..-B in geschlossener Ausführung sowie als Linear-Kugellager KNO..-B mit Segment-Ausschnitt.

Um Fluchtungsfehler auszugleichen, die durch Fertigungstoleranzen, Montagefehler und Wellendurchbiegungen entstehen, sind die Linearlager der Baureihe KN..-B winkeleinstellbar bis $\pm 30'$. Ihre robuste Konstruktion erlaubt den Betrieb auch unter rauen

Einsatzbedingungen.

Die Baureihe KN..-B ist geschlossen und für den Einsatz auf Wellen ausgelegt. KNO..-B hat einen Segment-Ausschnitt und wird bei

Tragschienen verwendet.

Linear-Kugellager

Linear-Kugellager KN..-B und KNO..-B bestehen aus einem Kunststoffkäfig mit eingelegten Laufbahnplatten. Die Platten stützen sich über einen Haltering in der Gehäusebohrung ab. Durch den Haltering können die Platten "wippen" und somit statische Fluchtungsfehler ausgleichen.

Abdichtung

Die Lager gibt es nicht abgedichtet und beidseitig mit Lippendichtung (Nachsetzzeichen PP). Die stirnseitigen Dichtungen haben zwei Dichtlippen, wobei die äußere das Eindringen von Schmutz verhindert und die innere den Schmierstoff im Lager hält.

Weitere Informationen

Weitere Informationen finden Sie auf folgenden Seiten:

- Maßtabellen, siehe Seite 74
- Wellen, siehe Seite 104
- Tragschienen, siehe Seite 128
- Zubehör, siehe Seite 144.

Linear-Kugellager der Leichtbau-Reihe

Baureihe ¹⁾	Merkmal
KNB KNB-PP	Linear-Kugellager geschlossen winkeleinstellbar ohne oder mit Lippendichtung
KNOB KNOB-PP	Linear-Kugellager mit Segment-Ausschnitt winkeleinstellbar ohne oder mit Lippendichtung

 $[\]overline{\ \ }$ Bei Nachsetzzeichen PP Lager beidseitig mit Lippendichtung.

Schwerlast-Reihe

Linear-Kugellager der Schwerlastreihe KS und KSO sowie die dazugehörigen Kugellager-Einheiten sind besonders tragfähig sowie winkeleinstellbar zum Ausgleich von Fluchtungsfehlern. Ihr Laufverhalten ist sehr gut.

Linear-Kugellager

Linear-Kugellager KS und KSO bestehen aus einem Kunststoffkäfig mit lose gehaltenen Segmenten. Die zweireihigen Segmente mit balligen Laufbahnplatten können sich in alle Richtungen einstellen und somit Fluchtungsfehler ausgleichen. Da sich das komplette Segment einstellt, ist eine Störung im Kugelumlauf ausgeschlossen. Das ergibt einen gleichmäßigen und niedrigen Verschiebewiderstand.

Die Baureihe KS ist geschlossen und für den Einsatz auf Wellen ausgelegt. KSO hat einen Segment-Ausschnitt und wird in Verbindung mit Tragschienen verwendet.

Abdichtung

Die Lager gibt es mit schleifenden Dichtungen oder mit Spaltdichtungen. Die schleifenden stirnseitigen Dichtungen haben zwei Dichtlippen, wobei die äußere das Eindringen von Schmutz verhindert und die innere den Schmierstoff im Lager hält.

Linear-Kugellager-Einheiten

Linear-Kugellager-Einheiten der Schwerlast-Reihe gibt es mit einem integrierten Lager sowie in der besonders tragfähigen Tandem-Ausführung mit zwei Lagern.

Für die Gehäuse wird hochfestes Aluminium verwendet.

Die Gehäuse sind geschlossen, mit Segment-Ausschnitt für unterstützte Wellen sowie ohne und mit Schlitz. Bei geschlitzten Ausführungen kann das Radialspiel über eine Stellschraube eingestellt werden.

Alle Baureihen haben eine Anschlagkante und Zentrierbohrungen für Stiftbohrungen.

Die montierten Lager sind beidseitig abgedichtet, erstbefettet und durch Schmiernippel im Gehäuse nachschmierbar.

Weitere Informationen

Weitere Informationen finden Sie auf folgenden Seiten:

- Maßtabellen, siehe Seite 76
- Wellen, siehe Seite 104
- Tragschienen, siehe Seite 128
- Zubehör, siehe Seite 144.

Linear-Kugellager und Linear-Kugellager-Einheiten der Schwerlast-Reihe

Baureihe ¹⁾		Merkmal
KS		Linear-Kugellager
KSPP	STATE OF THE PARTY	winkeleinstellbar
		ohne oder mit Lippendichtung
	S. S. SHILLING	
KSO		Linear-Kugellager
KSOPP	THE STREET	mit Segment-Ausschnitt
		winkeleinstellbar
	9	ohne oder mit Lippendichtung
KGSNGPP-AS		geschlossen
NUSINGFF-AS		nachschmierbar
		nacriscrimerbar
WCCNC DD AC	W i i	
KGSNSPP-AS		geschlossen
		Gehäuse geschlitzt
		nachschmierbar
KTSGPP-AS		geschlossen
	The state of the s	Tandem-Anordnung
		nachschmierbar
KTSSPP-AS	一情	geschlossen
	A STORES	Tandem-Anordnung
	+ 61	Gehäuse geschlitzt
		nachschmierbar
WCCNO DD AC		*** ***
KGSNOPP-AS	A D	mit Segment-Ausschnitt
		nachschmierbar
KGSNOSPP-AS		mit Segment-Ausschnitt
	T.00	Gehäuse geschlitzt
	思	nachschmierbar
KTSOPP-AS		mit Segment-Ausschnitt
	-	Tandem-Anordnung
		nachschmierbar
KTSOSPP-AS		mit Segment-Ausschnitt
	9	Tandem-Anordnung
		Gehäuse geschlitzt
		nachschmierbar
KGSCPP-AS		seitlich offen
		nachschmierbar
KGSCSPP-AS		seitlich offen
	and the same of th	Gehäuse geschlitzt
	A LAND	nachschmierbar
KTFSPP-AS		mit Zentrierbund
		Tandem-Anordnung
		nachschmierbar
	0	
	1	

 $[\]overline{\mbox{Bei Nach}}$ Bei Nachsetzzeichen PP Lager beidseitig mit Lippendichtung.

Massiv-Reihe

Linear-Kugellager der Massiv-Reihe KB, KBS und KBO sowie die dazugehörigen Linear-Kugellager-Einheiten sind hochpräzise und besonders steif. Ihr Laufverhalten ist hervorragend.

Linear-Kugellager

Linear-Kugellager KB, KBS und KBO bestehen aus einem gehärteten und geschliffenen Außenring, in dem ein Kugelkranz mit Kunststoffkäfig integriert ist.

Im gesamten Umlenkbereich werden die Kugeln durch einen speziellen Federring hochpräzise geführt. Das stellt sicher, dass selbst bei schwierigen Betriebsbedingungen und unabhängig von der Einbaulage der Verschiebewiderstand niedrig und gleichmäßig ist.

Die Baureihe KB ist geschlossen und für den Einsatz auf Wellen ausgelegt. KBO hat einen Segment-Ausschnitt und wird in Verbindung mit Tragschienen verwendet. KBS hat einen Schlitz zum Einstellen des Radialspiels.

Abdichtung

Die Lager haben schleifende Dichtungen oder Spaltdichtungen.

Linear-Kugellager-Einheiten

Linear-Kugellager-Einheiten der Massiv-Reihe gibt es mit einem integrierten Lager sowie in der besonders tragfähigen Tandem-Ausführung mit zwei Lagern.

Für die Gehäuse wird hochfestes Aluminium oder Druckguss verwendet.

Die Gehäuse sind geschlossen, mit Segment-Ausschnitt für unterstützte Wellen sowie ohne und mit Schlitz. Bei den geschlitzten Ausführungen kann das Radialspiel über eine Stellschraube eingestellt werden.

Alle Baureihen haben eine Anschlagkante und Zentrierbohrungen für Stiftbohrungen.

Die montierten Lager sind beidseitig abgedichtet, erstbefettet und durch Schmiernippel im Gehäuse nachschmierbar.

Weitere Informationen

Weitere Informationen finden Sie auf folgenden Seiten:

- Maßtabellen, siehe Seite 90
- Wellen, siehe Seite 104
- Tragschienen, siehe Seite 128
- Zubehör, siehe Seite 144.

Linear-Kugellager und Linear-Kugellager-Einheiten der Massiv-Reihe

Baureihe ¹⁾²⁾	Markmal
	Merkmal
KB KBPP KBPP-AS	Linear-Kugellager je nach Ausführung ohne oder mit Lippendichtung auch nachschmierbar
KBSPP KBSPP-AS	Linear-Kugellager je nach Ausführung ohne oder mit Lippendichtung auch nachschmierbar geschlitzt
KBO KBOPP KBOPP-AS	Linear-Kugellager je nach Ausführung ohne oder mit Lippendichtung auch nachschmierbar mit Segment-Ausschnitt
KGBPP-AS	geschlossen nachschmierbar
KGBSPP-AS	geschlossen Gehäuse geschlitzt nachschmierbar
KGBOPP-AS	mit Segment-Ausschnitt nachschmierbar
KGBAPP-AS	geschlossen nachschmierbar
KGBASPP-AS	geschlossen Gehäuse geschlitzt nachschmierbar
KGBAOPP-AS	mit Segment-Ausschnitt nachschmierbar
KTBPP-AS	geschlossen Tandem-Anordnung nachschmierbar
KTBOPP-AS	mit Segment-Ausschnitt Tandem-Anordnung nachschmierbar
KFBB-PP-AS	geschlossen nachschmierbar

¹⁾ Bei Nachsetzzeichen PP Lager beidseitig mit Lippendichtung.

²⁾ Lager und Einheiten mit Nachsetzzeichen AS sind nachschmierbar.

Gleitlager-Reihe

Linear-Gleitlager PAB und PABO sowie die dazugehörigen Gleitlager-Einheiten sind sehr hoch belastbar, äußerst robust und besonders geräuscharm. Ihre Notlaufeigenschaften sind hervorragend.

Linear-Gleitlager

Linear-Gleitlager PAB und PABO bestehen aus einem Außenring aus hochfestem Aluminium, in dem Gleitlagerbuchsen PAP..-P20 eingeklebt sind.

Die Baureihe PAB ist geschlossen und für den Einsatz auf Wellen ausgelegt. PABO hat einen Segment-Ausschnitt und wird in Verbindung mit Tragschienen verwendet.

Gleitbuchsen dürfen nicht in Verbindung mit der Spezialbeschichtung Corrotect[®] verwendet werden! Es kann dabei zu Spaltkorrosion kommen, die die Funktion des Lagers beeinträchtigt!

Weitere Informationen

64 | **WF 1**

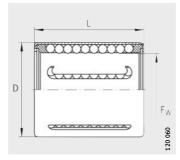
Weitere Informationen finden Sie auf folgenden Seiten:

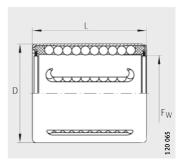
- Maßtabellen, siehe Seite 100
- Wellen, siehe Seite 104
- Tragschienen, siehe Seite 128
- Zubehör, siehe Seite 144.

Linear-Gleitlager und Linear-Gleitlager-Einheiten der Gleitlager-Reihe

Baureihe ¹⁾	Merkmal
PABPP-AS	geschlossen beidseitig Lippendichtung nachschmierbar
PABOPP-AS	mit Segment-Ausschnitt beidseitig Lippendichtung nachschmierbar
PAGBAPP-AS	geschlossen nachschmierbar
PAGBAOPP-AS	mit Segment-Ausschnitt Gehäuse geschlitzt nachschmierbar

¹⁾ Bei Nachsetzzeichen PP Lager beidseitig mit Lippendichtung.

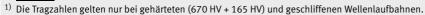




Kompakt-Reihe

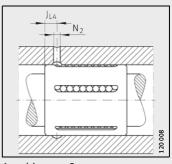
Linear-Kugellager

nicht abgedichtet oder abgedichtet nachschmierbar


KH..-PP KΗ

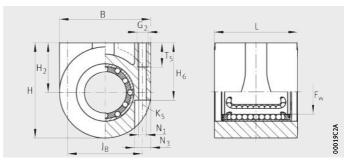
-	CALLES CO.
CTT	

Maßtabelle · Abmessungen in mm											
Kurzzeiche	en	Masse	Abmessungen Ansch		Anschlı	schlussmaße Tragzahlen ¹⁾					
2)	3)	m g	F _W	D	L	J _{L4}	N ₂	dyn. C _{min} N	stat. C _{0 min} N	dyn. C _{max} N	stat. C _{0 max} N
KH06	KH06-PP	7	6	12	22	4	2	340	240	390	340
KH08	KH08-PP	12	8	15	24	6	2	410	280	475	400
KH10	KH10-PP	14,5	10	17	26	6	2,5	510	370	590	520
KH12	KH12-PP	18,5	12	19	28	6	2,5	670	510	800	740
KH14	KH14-PP	20,5	14	21	28	6	2,5	690	520	830	760
KH16	KH16-PP	27,5	16	24	30	7	2,5	890	620	1 060	910
KH20	KH20-PP	32,5	20	28	30	7	2,5	1 110	790	1 170	1010
KH25	KH25-PP	66	25	35	40	8	2,5	2 280	1 670	2 420	2130
KH30	KH30-PP	95	30	40	50	8	2,5	3 300	2 700	3 300	3 100
KH40	KH40-PP	182	40	52	60	9	2,5	5 300	4 4 5 0	5 300	4 950
KH50	KH50-PP	252	50	62	70	9	2,5	6 800	6300	6 800	7 000



Korrosionsgeschützte Ausführungen haben das Nachsetzzeichen -RROC. Bitte bei der Bestellung angeben.

- ²⁾ Konserviert.
- 3) Erstbefettet, beidseitig abgedichtet.



Anschlussmaße

Kompakt-Reihe

Linear-Kugellager-Einheiten abgedichtet befettet

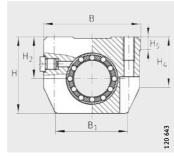
KGHA..-PP

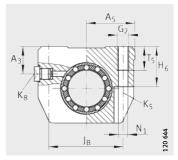
Maßtabelle · Abmessungen in mm									
Kurzzeichen	Masse	Abmessungen							
	m	F _W	H ₂	Н	В	L			
	≈g		±0,015			+0,5			
KGHA16-PP	228	16	20	41	42	37			
KGHA20-PP	303	20	25	48,5	47	39			
KGHA25-PP	496	25	30	57,5	55	49			
KGHA30-PP	860	30	35	67,5	65	59			
KGHA40-PP	1 434	40	45	84	78	71			

¹⁾ Die Tragzahlen gelten nur bei gehärteten (670 HV + 165 HV) und geschliffenen Wellenlaufbahnen.

²⁾ Für Befestigungsschrauben ISO 4762-8.8. Schrauben sichern, besonders wenn Vorspannungsverluste auftreten können.

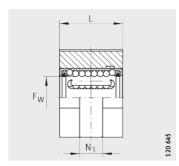
Anschlussmaße								Tragzahlen ¹⁾	
H ₆		T ₅	J _B	G_2	N_1	N_3	K ₅ ²⁾	dyn. C	stat. C ₀
			\pm 0,1					N	N
27		15	32	M6	5,1	8,1	M4	890	620
29		15	38	M6	5,1	8,1	M4	1110	790
35		15	46	M6	5,1	8,1	M4	2 280	1 670
39		20	54	M8	6,7	11,1	M6	3 3 0 0	2 700
49		20	66	M8	6,7	11,1	M6	5 300	4 450





Kompakt-Reihe

Linear-Kugellager-Einheiten abgedichtet befettet, nachschmierbar


KGHK..-B-PP-AS

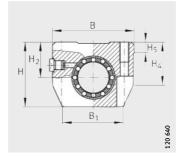
Maßtabelle · Abmessungen in mm									
Kurzzeichen	Masse	Abmessungen				Anschlussmaße			
	m	F _W	В	L	Н	J _B	B ₁	A ₅	
	≈g					±0,15			
KGHK06-B-PP-AS	40	6	32	22,2	27	23	25	16	
KGHK08-B-PP-AS	50	8	32	24,2	27	23	25	16	
KGHK10-B-PP-AS	70	10	40	26,2	33	29	32	20	
KGHK12-B-PP-AS	80	12	40	28,2	33	29	32	20	
KGHK14-B-PP-AS	100	14	43	28,2	36,5	34	34	21,5	
KGHK16-B-PP-AS	110	16	43	30,2	36,5	34	34	21,5	
KGHK20-B-PP-AS	150	20	53	30,2	42,5	40	40	26,5	
KGHK25-B-PP-AS	270	25	60	40,2	52,5	48	44	30	
KGHK30-B-PP-AS	400	30	67	50,2	60	53	49,6	33,5	
KGHK40-B-PP-AS	750	40	87	60,2	73,5	69	63	43,5	
KGHK50-B-PP-AS	1 250	50	103	70,2	92	82	74	51,5	

¹⁾ Die Tragzahlen gelten nur bei gehärteten (670 HV + 165 HV) und geschliffenen Wellenlaufbahnen.

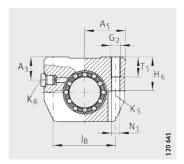
²⁾ Für Befestigungsschrauben ISO 4762-8.8. Schrauben sichern, besonders wenn Vorspannungsverluste auftreten können.

³⁾ Schmiernippel, siehe Seite 31.

KGHK..-B-PP-AS



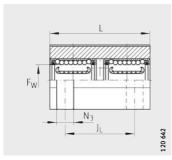
											Tragzahler	n ¹⁾
H ₂	H ₄	H ₅	T ₅	H ₆	A ₃	G ₂	N ₁	N ₃	K ₅ ²⁾	K ₈ ³⁾	dyn. C	stat. C ₀
+0,010 -0,014											N	N
13	20,6	5	9	13	9	M4	3,4	7	M3	NIPA1	340	240
14	20,6	5	9	13	9	M4	3,4	7	M3	NIPA1	410	280
16	25,1	5	11	16	11	M5	4,3	10	M4	NIPA1	510	370
17	25,1	5	11	16	11	M5	4,3	10	M4	NIPA1	670	510
18	28,1	6,9	11	18	13	M5	4,3	10	M4	NIPA1	690	520
19	28,1	6,9	11	18	13	M5	4,3	10	M4	NIPA1	890	620
23	29,8	7,4	13	22	15	M6	5,3	11	M5	NIPA2	1 110	790
27	36,6	9,9	18	26	17,5	M8	6,6	15	M6	NIPA2	2 280	1 670
30	42,7	8	18	29	18	M8	6,6	15	M6	NIPA2	3 300	2 700
39	49,7	12,8	22	38	23	M10	8,4	18	M8	NIPA2	5 300	4 4 5 0
47	62,3	10,9	26	46	28	M12	10,5	20	M10	NIPA2	6 800	6300


Kompakt-Reihe

Linear-Kugellager-Einheiten Tandem-Anordnung abgedichtet

befettet, nachschmierbar

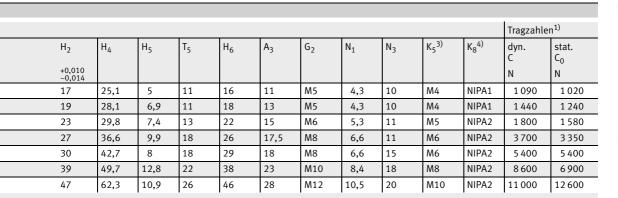
KTHK..-B-PP-AS


Maßtabelle · Abmessungen in mm												
Kurzzeichen	Masse	Abmessun	igen			Anschluss	maße					
	m	F _W	В	L	Н	J_{B}	B ₁	A ₅	J _L ²⁾			
	≈g					±0,15			±0,15			
KTHK12-B-PP-AS	170	12	40	60	33	29	32	20	35			
KTHK16-B-PP-AS	230	16	43	65	36,5	34	34	21,5	40			
KTHK20-B-PP-AS	320	20	53	65	42,5	40	40	26,5	45			
KTHK25-B-PP-AS	580	25	60	85	52,5	48	44	30	55			
KTHK30-B-PP-AS	850	30	67	105	60	53	49,6	33,5	70			
KTHK40-B-PP-AS	1 600	40	87	125	73,5	69	63	43,5	85			
KTHK50-B-PP-AS	2700	50	103	145	92	82	74	51,5	100			

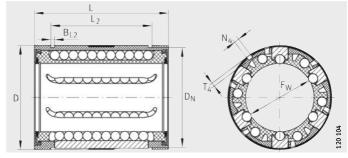
¹⁾ Die Tragzahlen gelten nur bei gehärteten (670 HV + 165 HV) und geschliffenen Wellenlaufbahnen und bei gleichmäßiger Belastung der beiden Linear-Kugellager.

 $^{^{2)}\,}$ Maß J_L und Schmierbohrung symmetrisch zur Lagerlänge L.

Für Befestigungsschrauben ISO 4762-8.8. Schrauben sichern, besonders wenn Vorspannungsverluste auftreten können.


⁴⁾ Schmiernippel, siehe Seite 31.

KTHK..-B-PP-AS



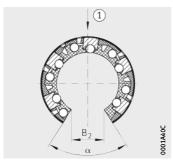
Leichtbau-Reihe

Linear-Kugellager

winkeleinstellbar geschlossen oder mit Segment-Ausschnitt nicht abgedichtet oder abgedichtet nachschmierbar

KN..-B-PP, KN..-B

Maßtabelle · Abmessungen in mm												
Kurzzeichen				Masse	Abmess	sungen		Anschlus	smaße			
				m	F _W	D	L	B ₂ ²⁾	L ₂			
				≈g					H13			
KN12-B-PP	KN12-B	-	-	20	12	22	32	-	22,6			
_	-	KNO12-B-PP	KNO12-B	20	12	22	32	6,5	_			
KN16-B-PP	KN16-B	-	-	30	16	26	36	-	24,6			
-	-	KNO16-B-PP	KNO16-B	20	718	26	36	9	_			
KN20-B-PP	KN20-B	-	-	60	20	32	45	-	31,2			
_	-	KNO20-B-PP	KNO20-B	50	720	32	45	9	_			
KN25-B-PP	KN25-B	-	-	130	25	40	58	-	43,7			
-	-	KNO25-B-PP	KNO25-B	110	23	40	56	11,5	_			
KN30-B-PP	KN30-B	-	-	190	30	47	68	-	51,7			
_	-	KNO30-B-PP	KNO30-B	160	30	47	00	14	_			
KN40-B-PP	KN40-B	-	-	350	40	(2	00	-	60,3			
-	-	KNO40-B-PP	KNO40-B	300	40	62	80	19	_			
KN50-B-PP	KN50-B	-	_	670	50	75	100	-	77,3			
_	-	KNO50-B-PP	KNO50-B	570	7 20	/ 5	100	22,5				


 $[\]overline{}^{(1)}$ Die Tragzahlen gelten nur bei gehärteten (670 HV + 165 HV) und geschliffenen Wellenlaufbahnen.

²⁾ Maß B₂ am Durchmesser F_W.

 $^{^{3)}}$ Bohrungslage symmetrisch zu Lagerlänge L.

⁴⁾ Tragzahl in Hauptlastrichtung.

^{5) 1} Hauptlastrichtung

KNO..-B-PP, KNO..-B (1)⁵⁾

 D_N

21

25

30,7

38,5

44,7

59,4

71,4

 T_4

0,7

0,7

0,9

1,4

2,2

2,2

2,3

 B_{L2}

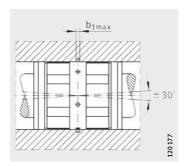
1,3

1,3

1,6

1,85

1,85


2,15

2,65

_

_

_

Winkeleinstellbar bis $\pm 30'$

N₄³⁾

3

3

3

3

3

3

5

α

66

68

55

57

57

56

54

A₁₀

1,5

2

1,5

2,5

Kugelreihen

b_{1 max}

1,5

1,5

2,5

2,5

2,5

3

3

 ${\it Tragzahlen}^{1)}$

stat.

Ν

C_{0 min}

510

620

1 2 3 0

2 2 2 0

2850

4350

6 5 0 0

dyn.

 C_{max}

870

1 040

1 0004)

 1740^{4}

3 100⁴⁾

37504)

6700

9800

9 300⁴⁾

63004)

3 950

1830

3 2 5 0

840⁴⁾

Ν

stat.

Ν

 $C_{0 \text{ max}}$

740

640⁴⁾

750⁴⁾

910

1570

1 240⁴⁾

2 260⁴⁾

3 6 5 0

 2850^{4}

5 600

8 300

4 350⁴⁾

6 500⁴⁾

2850

dyn.

 C_{min}

730

870

1730

3 100

3 750

6300

9 300

Ν

Anzahl

5

4

5

4

6

5

6

5

6

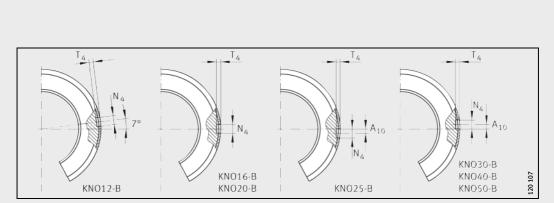
5

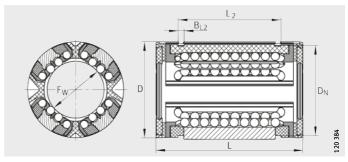
6

5

6

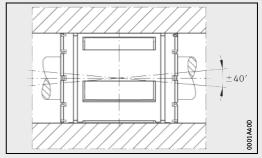
5





Fixierbohrungen

Linear-Kugellager


winkeleinstellbar geschlossen oder mit Segment-Ausschnitt nicht abgedichtet oder abgedichtet nachschmierbar

KS, KS..-PP

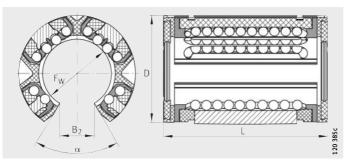
Maßtabell	e · Abmessungen	in mm									
Kurzzeiche	en			Masse	Abmes	sungen		Anschlussmaße			
3)	4)	3)	4)	m	F _W	D	L	B ₂ ⁵⁾	L ₂	B _{L2}	
				≈g					H13		
KS12	KS12-PP	-	-	18	12	22	32	_	22,6	1,3	
-	-	KS012	KSO12-PP	13	712	22	32	7,6	-	-	
KS16	KS16-PP	-	-	28	16	26	26	_	24,6	1,3	
-	-	KS016	KSO16-PP	19	16	26	36	10,1	-	-	
KS20	KS20-PP	-	-	51	20	32	45	-	31,2	1,6	
-	-	KS020	KSO20-PP	38	20	32	45	10	-	-	
KS25	KS25-PP	-	-	102	25	40	58	-	43,7	1,85	
-	-	KS025	KSO25-PP	75	25	40	56	12,5	-	-	
KS30	KS30-PP	-	-	172	30	47	68	_	51,7	1,85	
-	-	KS030	KSO30-PP	135	30	47	00	14,3	-	-	
KS40	KS40-PP	-	-	335	40	(2	90	_	60,3	2,15	
-	-	KS040	KSO40-PP	259	40	62	80	18,2	-	-	
KS50	KS50-PP	-	-	589	- 50	75	100	_	77,3	2,65	
_	-	KS050	KSO50-PP	454	20	/5	100	22,7	-	_	

 $[\]overline{}^{1)}$ Die Tragzahlen gelten nur bei gehärteten (670 HV + 165 HV) und geschliffenen Wellenlaufbahnen.

Winkeleinstellbar bis $\pm 40'$

²⁾ Tragzahl in Hauptlastrichtung.

³⁾ Konserviert, beidseitig Spaltdichtung.


⁴⁾ Erstbefettet, beidseitig schleifende Dichtung.


⁵⁾ Maß B₂ am Durchmesser F_W.

⁶⁾ Bohrungslage symmetrisch zu Lagerlänge L.

 $^{^{7)}\,}$ Nur jeweils eine Schmier- und Fixierbohrung bei Größe 16 und 20.

^{8) 1} Hauptlastrichtung

KSO, KSO..-PP

_

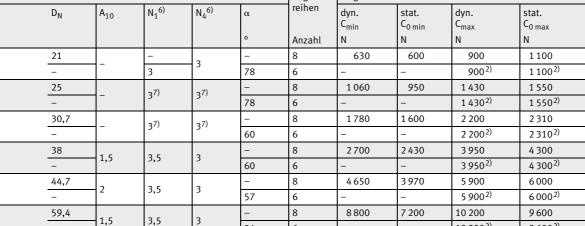
71,4

2,5

KSO, KSO..-PP

 $10\ 200^{2)}$

15 100


15 100²⁾

9 600²⁾

13 900

13 900²⁾

										n		1
											·	l
					Kugel-	${\sf Tragzahlen^{1)}}$				8		100
D_N	A ₁₀	N ₁ ⁶⁾	N ₄ ⁶⁾	α	reihen	dyn.	stat.	dyn.	stat.			

6

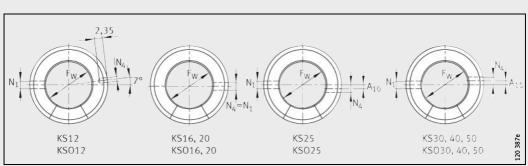
8

6

12300

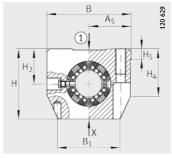
9700

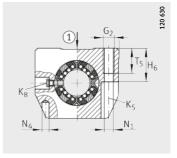
54


54

5

4,5





Fixierbohrungen⁷⁾

Linear-Kugellager-Einheiten geschlossen oder mit Schlitz abgedichtet befettet, nachschmierbar

KGSNG..-PP-AS, KGSNS..-PP-AS $\stackrel{\frown}{\text{(1)}}$ $^{7)}$

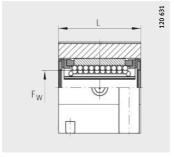
KGSNG..-PP-AS, KGSNS..-PP-AS

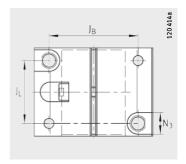
Maßtabelle · Abmessungen in mm												
Kurzzeichen		Masse	Abmess	ungen			Anschlussmaße					
		m	F _W	В	L	Н	J _B	B ₁	A ₅	J _L ³⁾		
		≈g					±0,15		±0,01	±0,15		
KGSNG12-PP-AS	-	110	12	43	32	35	32	34	21,5	23		
-	KGSNS12-PP-AS	100	12	43	32	25	32	34	21,5	23		
KGSNG16-PP-AS	-	220	16	53	37	42	40	40	26,5	26		
-	KGSNS16-PP-AS	200	718	55	37	42	40	40	20,5	20		
KGSNG20-PP-AS	-	370	20	60	45	50	45	44	30	32		
-	KGSNS20-PP-AS	360	20	60	45	50	45	44	30	32		
KGSNG25-PP-AS	-	630	25	78	58	60	60	59,4	39	40		
-	KGSNS25-PP-AS	550	23	70	56	00	00	33,4	39	40		
KGSNG30-PP-AS	-	890	30	87	68	70	68	63	43,5	45		
-	KGSNS30-PP-AS	730	30	07	00	70	00	63	43,3	45		
KGSNG40-PP-AS	-	1 300	40	108	80	90	86	76	54	58		
-	KGSNS40-PP-AS	1 350	40	100	80	90	00	76	54	56		
KGSNG50-PP-AS	-	2 200	50	132	100	105	108	90	66	50		
-	KGSNS50-PP-AS	2 250	750	132	100	103	100	30	00	50		

¹⁾ Die Tragzahlen gelten nur bei gehärteten (670 HV + 165 HV) und geschliffenen Wellenlaufbahnen.

²⁾ Tragzahl in Hauptlastrichtung.

 $^{^{3)}}$ Maß J $_{\rm L}$ und Schmierbohrung symmetrisch zur Lagerlänge L.


⁴⁾ Zentrierung für Stiftbohrung.


⁵⁾ Für Befestigungsschrauben ISO 4762-8.8. Schrauben sichern, besonders wenn Vorspannungsverluste auftreten können.

⁶⁾ Schmiernippel. Ausführungen und Maße, siehe Seite 30.

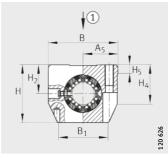
^{7) (1)} Hauptlastrichtung

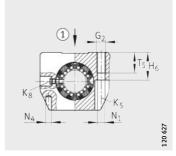
KGSNS..-PP-AS

KGSNG..-PP-AS, KGSNS..-PP-AS

KGSNS..-PP-AS

×
-


												Kugel-	Tragzahlen ¹⁾²⁾	
H ₂	H ₅	H ₄	T ₅	H ₆	G ₂	N ₁	N ₄ ⁴⁾	N ₃	K ₅ ⁵⁾	K ₈ ³⁾⁶⁾	Schlüssel- weite W	reihen	dyn. C _{max}	stat. C _{0 max}
+0,008 -0,016												Anzahl	N	N
18	5,4	26,6	11	16,5	M5	4,3	4	8	M4	NIP4MZ	_	8	900	1 100
											2,5			
22	6,9	29,3	13	21	M6	5,3	4	10	M5	NIP4MZ	3	8	1 430	1 550
											_			
25	7,4	34,1	18	24	M8	6,6	5	11	M6	NIP4MZ	4	8	2 200	2 310
30	8,3	41,5	22	29	M10	8,4	6	15	M8	NIP5MZ	_	8	3 9 5 0	4 300
50	0,5	71,5	22	27	MIO	0,4	0	1)	MO	IVII JIVIZ	5	0	3730	4 300
35	9,3	46,2	22	34	M10	8,4	6	15	M8	NIP5MZ	ı	8	5 900	6 000
))	7,7	40,2	22	54	MIO	0,4	0	ינ	IVIO	INIT JINIZ	5	0	3 900	0 000
45	11,7	57,6	26	44	M12	10,5	8	18	M10	NIP5MZ	ı	8	10 200	9 600
45	11,/	57,6	20	44	WIIZ	10,5	0	10	MIO	MIEDIMZ	6	0	10 200	9600
50	10,6	62	35	49	M16	13,5	10	20	M12	NIP6MZ	-	8	15 100	13 900
50	10,0	02	,,	49	INITO	1,7,7	10	20	IVIIZ	INII OIVIZ	8	G	15100	13,700



Linear-Kugellager-Einheiten

Tandem-Anordnung geschlossen oder mit Schlitz abgedichtet befettet, nachschmierbar

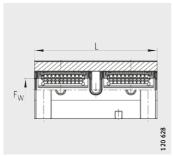
KTSG..-PP-AS, KTSS..-PP-AS $\bigcirc^{7)}$

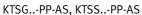
KTSG..-PP-AS, KTSS..-PP-AS $\bigcirc^{7)}$

Maßtabelle · Abme	Maßtabelle · Abmessungen in mm												
Kurzzeichen		Masse	Masse Abmessungen					Anschlussmaße					
		m	F _W	В	L	Н	J _B	B ₁	A ₅	J _L ³⁾	L ₆ ³⁾		
		≈g					±0,15		±0,01	±0,15			
KTSG12-PP-AS	-	210	12	43	70	35	32	34	21,5	56	24		
-	KTSS12-PP-AS	210	12	4)	70))	32	54	21,5	50	24		
KTSG16-PP-AS	-	380	16	53	78	42	40	40	26,5	64	26		
-	KTSS16-PP-AS	760	10))	76	42	40	40	20,5	04	20		
KTSG20-PP-AS	-	550	20	60	96	50	45	44	30	76	33		
_	KTSS20-PP-AS	330	20	60	90	50	45	44	30	76	33		
KTSG25-PP-AS	-	1130	25	78	122	60	60	59,4	39	94	44		
-	KTSS25-PP-AS	1130	25	70	122	60	60	59,4	39	94	44		
KTSG30-PP-AS	-	1780	30	87	142	70	68	63	43,5	106	54		
-	KTSS30-PP-AS	1730	00	07	142	/ 0	00	رن	45,5	100	74		

¹⁾ Die Tragzahlen gelten nur bei gehärteten (670 HV + 165 HV) und geschliffenen Wellenlaufbahnen.

²⁾ Tragzahl in Hauptlastrichtung.


 $^{^{\}rm 3)}\,$ Maß $\rm J_L, L_6$ und Schmierbohrung symmetrisch zur Lagerlänge L.


⁴⁾ Zentrierung für Stiftbohrung.

⁵⁾ Für Befestigungsschrauben ISO 4762-8.8. Schrauben sichern, besonders wenn Vorspannungsverluste auftreten können.

⁶⁾ Schmiernippel. Ausführungen und Maße, siehe Seite 30.

^{7) (1)} Hauptlastrichtung

 H_4

26,6

29,3

34,1

41,5

46,2

T₅

11

13

18

22

22

 H_6

16,5

21

24

29

34

 G_2

M5

M6

M8

M10

M10

 H_2

+0,008 -0,016

18

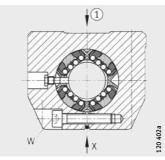
22

25

30

35

H₅


5,4

6,9

7,4

8,3

9,3

K₅⁵⁾

M4

M5

M6

M8

M8

K₈^{3) 6)}

NIP4MZ

NIP4MZ

NIP4MZ

NIP5MZ

NIP5MZ

KTSS..-PP-AS

 N_1

4,3

5,3

6,6

8,4

8,4

N₄⁴⁾

4

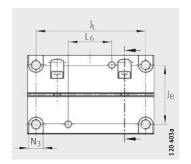
4

5

6

6

 N_3


8

10

11

15

15

Tragzahlen¹⁾²⁾

stat.

Ν

C_{0 max}

2 100

3 100

4600

8 600

12000

dyn.

 C_{max}

1 460

2330

3 500

6 400

9 600

Ν

KTSS..-PP-AS

Schlüssel-

weite

W

2,5

3

4

5

Kugelreiĥen

Anzahl

8

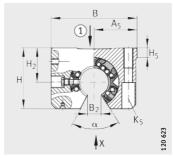
8

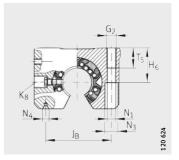
8

8

8

to	00000	ma	17
Q.			0
OH		****	9
TI.			궠





Linear-Kugellager-Einheiten

mit Segment-Ausschnitt ohne oder mit Schlitz abgedichtet befettet, nachschmierbar

Ab KGSNO16-PP-AS, KGSNOS16-PP-AS $\stackrel{(1)}{\scriptstyle 8)}$

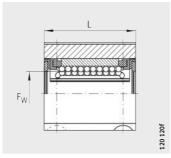
Ab KGSNO16-PP-AS, KGSNOS16-PP-AS

Maßtabelle · Abmess	Maßtabelle · Abmessungen in mm											
Kurzzeichen		Masse	Abmess	ungen			Anschlussmaße					
		m	F _W	В	L	Н	J _B	A ₅	B ₂ ³⁾	J _L ⁴⁾		
		≈g					±0,15	±0,01		±0,15		
KGSNO12-PP-AS	-	80	12	43	32	28	32	21,5	7,6	23		
-	KGSNOS12-PP-AS	90	12	43	32	20	32	21,5	7,0	23		
KGSNO16-PP-AS	-	150	16	53	37	35	40	26,5	10,1	26		
-	KGSNOS16-PP-AS	150	10	55	37	33	40	26,5	10,1	20		
KGSNO20-PP-AS	-	200	20	60	45	42	45	30	10	32		
-	KGSNOS20-PP-AS	250	20	00	4)	42	43	30	10	32		
KGSNO25-PP-AS	-	410	25	78	58	51	60	39	12,5	40		
-	KGSNOS25-PP-AS	520	23	78	56	71	00	39	12,5	40		
KGSNO30-PP-AS	-	600	30	87	68	60	68	43,5	14,3	45		
-	KGSNOS30-PP-AS	760	30	67	08	00	08	45,5	14,5	43		
KGSNO40-PP-AS	-	1 100	40	108	80	77	86	54	18,2	58		
-	KGSNOS40-PP-AS	1 400	40	103	80	//	00	54	10,2	J6		
KGSNO50-PP-AS	-	2870	50	132	100	88	108	66	22,7	50		
-	KGSNOS50-PP-AS	2 670	50	1 1 2 2	100	00	100	00	22,7	50		

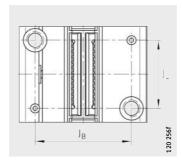
¹⁾ Die Tragzahlen gelten nur bei gehärteten (670 HV + 165 HV) und geschliffenen Wellenlaufbahnen.

²⁾ Tragzahl in Hauptlastrichtung.

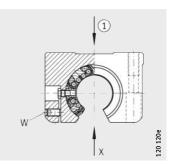
³⁾ Maß B₂ am Durchmesser F_W.


 $^{^{4)}}$ Maß J $_{\rm L}$ und Schmierbohrung symmetrisch zur Lagerlänge L.

⁵⁾ Zentrierbohrung DIN 332 Form A.

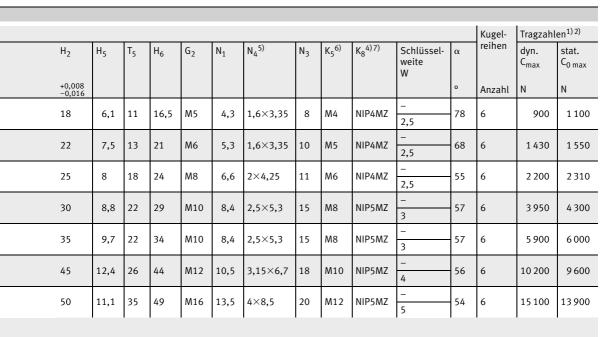

⁶⁾ Für Befestigungsschrauben ISO 4762-8.8. Schrauben sichern, besonders wenn Vorspannungsverluste auftreten können.

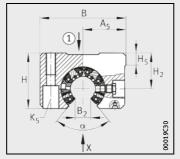
⁷⁾ Schmiernippel. Ausführungen und Maße, siehe Seite 30.

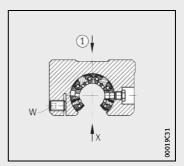

⁸⁾ ① Hauptlastrichtung

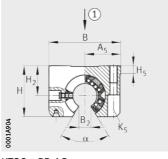
KGSNO..-PP-AS, KGSNOS..-PP-AS

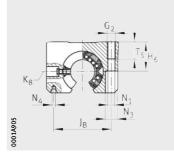
KGSNOS..-PP-AS Ansicht X


Ab KGSNOS16-PP-AS $(1)^{8}$



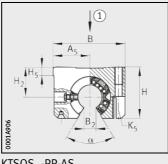


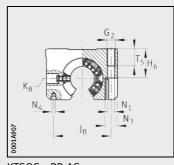

KGSNO12-PP-AS, KGSNOS12-PP-AS


KGSNOS12-PP-AS

Linear-Kugellager-Einheiten

Tandem-Anordnung mit Segment-Ausschnitt ohne oder mit Schlitz abgedichtet befettet, nachschmierbar


KTSO..-PP-AS


KTSO..-PP-AS

Maßtabelle · Abmessungen in mm												
Kurzzeichen		Masse	Abmess	ungen			Anschlu	Anschlussmaße				
		m	F _W	В	L	Н	J_{B}	A ₅	B ₂ ³⁾	J _L ⁴⁾		
		≈g					±0,15	±0,01		±0,15		
KTSO12-PP-AS	-	190	12	43	70	28	32	21,5	7,6	56		
-	KTSOS12-PP-AS	190	12	4)	70	20	32	21,5	7,0	50		
KTSO16-PP-AS	-	320	16	53	78	35	40	26,5	10,1	64		
-	KTSOS16-PP-AS	320	10))	76))	40	20,5	10,1	04		
KTSO20-PP-AS	-	520	20	60	96	42	45	30	10	76		
_	KTSOS20-PP-AS	520	20	60	96	42	45	30	10	76		
KTSO25-PP-AS	-	1 060	25	78	122	51	60	39	12,5	94		
-	KTSOS25-PP-AS	1 000	25	70	122	31	60	39	12,5	94		
KTSO30-PP-AS	-	1 550	30	87	142	60	68	43,5	14,3	106		
-	KTSOS30-PP-AS	1 550	30	0/	142	60	00	40,0	14,3	100		

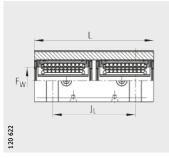
¹⁾ Die Tragzahlen gelten nur bei gehärteten (670 HV + 165 HV) und geschliffenen Wellenlaufbahnen.

KTSOS..-PP-AS

KTSOS..-PP-AS

²⁾ Tragzahl in Hauptlastrichtung.

³⁾ Maß B₂ am Durchmesser F_W.


 $^{^{\}rm 4)}\,$ Maß $\rm J_L, L_6$ und Schmierbohrung symmetrisch zur Lagerlänge L.

⁵⁾ Zentrierbohrung DIN 332 Form A.

⁶⁾ Für Befestigungsschrauben ISO 4762-8.8. Schrauben sichern, besonders wenn Vorspannungsverluste auftreten können.

⁷⁾ Schmiernippel. Ausführungen und Maße, siehe Seite 30.

⁸⁾ ① Hauptlastrichtung

KTSO..-PP-AS, KTSOS..-PP-AS

 H_5 T_5

6,1

7,5

8

8,8 22

9,7

11

13

18

22

 H_6

16,5 M5

21

24

29

34

 G_2

M6

M8

M10

M10 8,4

 N_1

4,3

5,3

6,6

8,4

L₆⁴⁾

24

26

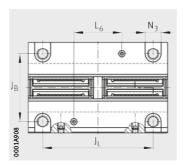
33

44

54

 H_2

+0,008 -0,016


18

22

25

30

35

K₈⁴⁾⁷⁾

NIP4MZ

NIP4MZ

NIP4MZ

NIP5MZ

NIP5MZ

Schlüssel-

weite

W

2,5

2,5

2,5

3

3

α

66 6

68

55

57 6

57

K₅⁶⁾

Μ4

M5

M6

M8

М8

 N_3

8

10

11

15

15

KTSO..-PP-AS Ansicht X

N₄⁵⁾

1,6×3,35

1,6×3,35

 $2 \times 4,25$

 $2,5 \times 5,3$

 $2,5 \times 5,3$

 $Tragzahlen^{1)2}$

stat.

Ν

 $C_{0\;max}$

2100

3 100

4 600

8 600

12000

dyn.

 C_{max}

1 4 6 0

2330

3 500

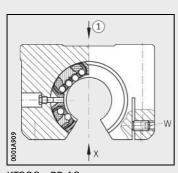
6 4 0 0

9 600

Ν

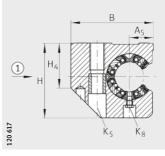
Kugel-

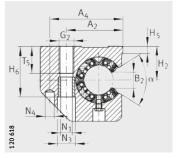
reiĥen


Anzahl

6

6





KTSOS..-PP-AS

Linear-Kugellager-Einheiten seitlicher Segment-Ausschnitt ohne oder mit Schlitz abgedichtet befettet, nachschmierbar

KGSC..-PP-AS, KGSCS..-PP-AS \bigcirc $^{8)}$

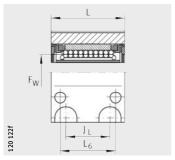
KGSC..-PP-AS, KGSCS..-PP-AS

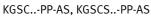
Maßtabelle · Abm	essungen in mm											
Kurzzeichen		Masse	Abmes	sungen			Anschlu	ussmaße	9			
		m	F _W	В	L	Н	A ₂	A ₄	A ₅	B ₂ ³⁾	J _L ⁴⁾	L ₆ ⁴⁾
		≈g					±0,15		±0,01		±0,15	
KGSC20-PP-AS	_	350	20	60	47	60	39	51	17	10	30	36
-	KGSCS20-PP-AS	330	20	00	47	00	39	71	17	10	50	50
KGSC25-PP-AS	-	680	25	75	58	72	49	64	21	12,5	36	45
-	KGSCS25-PP-AS	080	23	/ 3	50	12	49	04	21	12,5	50	43
KGSC30-PP-AS	_	1 000	30	86	68	82	59	76	25	14,3	42	52
_	KGSCS30-PP-AS	1 000	30	80	00	02	39	70	23	14,5	42	32
KGSC40-PP-AS	_	1 800	40	110	80	100	75	97	32	18,2	48	60
-	KGSCS40-PP-AS	1 800	40	110	80	100	73	31	32	10,2	40	00
KGSC50-PP-AS	_	2 900	50	127	100	115	88	109	38	22,7	62	80
-	KGSCS50-PP-AS	2 300	30	12/	100	113	00	109	טכ	۷,۷	02	80

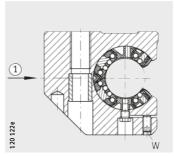
¹⁾ Die Tragzahlen gelten nur bei gehärteten (670 HV + 165 HV) und geschliffenen Wellenlaufbahnen.

²⁾ Tragzahl in Hauptlastrichtung.

³⁾ Maß B₂ am Durchmesser F_W.


 $^{^{\}rm 4)}\,$ Maß $\rm J_L,\,L_6$ und Schmierbohrung symmetrisch zur Lagerlänge L.

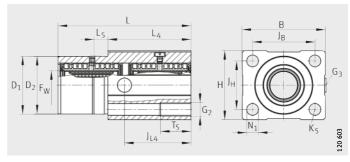

⁵⁾ Zentrierung für Stiftbohrung.


⁶⁾ Für Befestigungsschrauben ISO 4762-8.8. Schrauben sichern, besonders wenn Vorspannungsverluste auftreten können.

⁷⁾ Schmiernippel. Ausführungen und Maße, siehe Seite 30.

^{8) 1} Hauptlastrichtung

KGSCS..-PP-AS



													Kugel-	Tragzahl	en ^{1) 2)}
H ₂	H ₅	H ₄	T ₅	H ₆	G ₂	N ₁	N ₄ ⁵⁾	N ₃	K ₅ ⁶⁾	K ₈ ⁴⁾⁷⁾	Schlüssel- weite W	α	reihen	dyn. C _{max}	stat. C _{0 max}
+0,008 -0,016												0	Anzahl	N	N
30	8,3	37,5	18	42,6	M10	8,4	6	15	M8	NIP4MZ	2,5	55	6	2 200	2 3 1 0
35	8,2	45	22	50,6	M12	10,5	8	18	M10	NIP5MZ	3	57	6	3 9 5 0	4 300
40	9	52	29	55,6	M16	13,5	10	20	M12	NIP5MZ	3	57	6	5 900	6 0 0 0
45	9,5	60	36	67,6	M20	15,5	12	24	M14	NIP5MZ	4	56	6	10 200	9 600
50	8,6	70	36	78,8	M20	17,5	12	26	M16	NIP6MZ	- 5	54	6	15 100	13 900

Linear-Kugellager-Einheiten Zentrierbund Tandem-Anordnung abgedichtet befettet, nachschmierbar

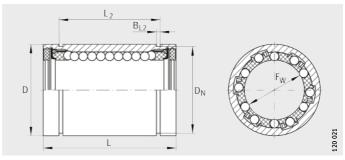
KTFS..-PP-AS

Maßtabelle · Abmessunge	en in mm								
Kurzzeichen	Masse	Abmess	ungen			Anschluss	maße		
	m	F _W	В	L	Н	J _B	L ₄	L ₅	
	≈g					±0,15			
KTFS12-PP-AS	180	12	42	70	34	32	46	10	
KTFS16-PP-AS	260	16	50	78	40	38	50	10	
KTFS20-PP-AS	550	20	60	96	50	45	60	10	
KTFS25-PP-AS	700	25	74	122	60	56	73	10	
KTFS30-PP-AS	1100	30	84	142	70	64	82	10	

¹⁾ Die Tragzahlen gelten nur bei gehärteten (670 HV + 165 HV) und geschliffenen Wellenlaufbahnen.

²⁾ Empfohlene Aufnahmebohrung für $D_1 = H7$.

										Tragzahle	n ¹⁾
J _{L4}	D ₁ ²⁾	D ₂	J _H ±0,15	T ₅	G ₂	N ₁	K ₅	G ₃	reihen Anzahl	C _{min}	stat. C _{0 min} N
35	30	30	24	13	M6	5,3	M5	M8×1	8	1 020	1 200
39	35	35	28	18	M8	6,6	M6	M8×1	8	1 790	1 900
48	42	42	35	22	M10	8,4	M8	M8×1	8	3 100	3 200
61	52	52	42	26	M12	10,5	M10	M8×1	8	4 400	4850
71	61	61	50	35	M16	13,5	M12	M8×1	8	7 5 5 0	7 900



Linear-Kugellager

geschlossen, geschlitzt oder mit Segment-Ausschnitt nicht abgedichtet oder abgedichtet nicht befettet, befettet, nachschmierbar

ΚB

Maßtabelle · A	Abmessungen in	mm								
Kurzzeichen			Masse	Abmess	sungen			Anschlu	ıssmaße	
3)	4)	5)	m	F _w		D ⁶⁾	L	B ₂ ⁷⁾	L ₂	B _{L2} ⁸⁾
			≈g		Toleranzen ⁶⁾	h5	h12		H13	
KB12	KB12-PP	KB12-PP-AS	40					_		
KBS12	KBS12-PP	KBS12-PP-AS	40	12	+0,008	22	32		22,6	1,3
KBO12	KBO12-PP	KBO12-PP-AS	30					7,7		
KB16	KB16-PP	KB16-PP-AS	- 50							
KBS16	KBS16-PP	KBS16-PP-AS	30	16	+0,009 -0,001	26	36	_	24,6	1,3
KBO16	KBO16-PP	KBO16-PP-AS	40					10,1		
KB20	KB20-PP	KB20-PP-AS	90							
KBS20	KBS20-PP	KBS20-PP-AS	90	20	+0,009 -0,001	32	45	_	31,2	1,6
KBO20	KBO20-PP	KBO20-PP-AS	70					10		
KB25	KB25-PP	KB25-PP-AS	190							
KBS25	KBS25-PP	KBS25-PP-AS	190	25	+0,011 -0,001	40	58	_	43,7	1,85
KBO25	KBO25-PP	KBO25-PP-AS	150					12,5		
KB30	KB30-PP	KB30-PP-AS	300							
KBS30	KBS30-PP	KBS30-PP-AS	300	30	+0,011 -0,001	47	68	_	51,7	1,85
KBO30	KBO30-PP	KBO30-PP-AS	240					13,6		
KB40	KB40-PP	KB40-PP-AS	600							
KBS40	KBS40-PP	KBS40-PP-AS	800	40	+0,013 -0,002	62	80	_	60,3	2,15
KBO40	KBO40-PP	KBO40-PP-AS	520					18,2		
KB50	KB50-PP	KB50-PP-AS	1 000							
KBS50	KBS50-PP	KBS50-PP-AS	1 000	50	+0,013 -0,002	75	100	_	77,3	2,65
KB050	KBO50-PP	KBO50-PP-AS	850					22,7		
	•	•				•		•		•

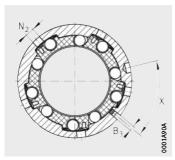
¹⁾ Die Tragzahlen gelten nur bei gehärteten (670 HV + 165 HV) und geschliffenen Wellenlaufbahnen.

²⁾ Tragzahl in Hauptlastrichtung.

³⁾ Konserviert.

⁴⁾ Erstbefettet, beidseitig Dichtungen.

 $^{^{5)}}$ Erstbefettet, beidseitig Dichtungen, nachschmierbar.

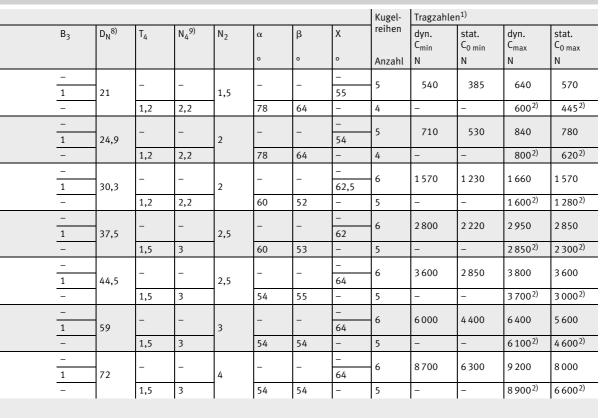

⁶⁾ Die Toleranzen gelten nur für KB.

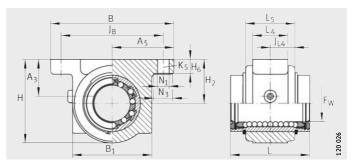
 $^{^{7)}}$ Maß B₂ am Durchmesser F_W.

⁸⁾ Nutmaße passend zu Sicherungsringen nach DIN 471.

⁹⁾ Bohrungslage symmetrisch zu Lagerlänge L.

^{10) (1)} Hauptlastrichtung


KBO..-PP-AS 10)



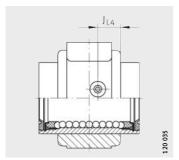
Linear-Kugellager-Einheiten geschlossen, geschlitzt oder mit Segment-Ausschnitt abgedichtet befettet, nachschmierbar

KGB..-PP-AS

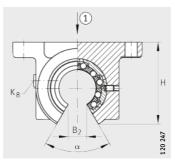
Maßtabelle · A	bmessungen in m	m										
Kurzzeichen			Masse	Abr	nessunger	1			Anschlussi	naße		
			m	F _W		В	L	Н	J _B	B ₁	A ₅	B ₂ ⁴⁾
												_
					Tole-							
			≈g		ranzen ⁶⁾		h12					
KGB12-PP-AS	-	-	100					35,8				_
-	KGBS12-PP-AS	-	100	12	+0,008 0	52	32	55,6	42 ±0,15	31,6	26±0,02	
-	-	KGBO12-PP-AS	90					32				7,7
KGB16-PP-AS	-	-	140					37,5				_
-	KGBS16-PP-AS	-	140	16	+0,009 -0,001	56	36	37,3	46 ±0,15	35	28±0,02	
_	-	KGBO16-PP-AS	120					33,5				10,1
KGB20-PP-AS	-	-	300					47,5				_
	KGBS20-PP-AS	-	300	20	+0,009 -0,001	70	45	77,5	58 ±0,15	45	35±0,02	
	-	KGBO20-PP-AS	250					45				10
KGB25-PP-AS	_	_	580					57,5				_
-	KGBS25-PP-AS	-	,,,,	25	+0,011 -0,001	80	58	3,,5	68 ±0,15	55	40±0,02	
-	-	KGBO25-PP-AS	490					54,5				12,5
KGB30-PP-AS	-	-	900		.0.011			66,5				_
	KGBS30-PP-AS	-		30	+0,011 -0,001	88	68	,	76 ±0,2	63	44±0,02	
-	_	KGBO30-PP-AS	780					63,5				13,6
KGB40-PP-AS	-	-	1 430		+0.013			83,5				_
-	KGBS40-PP-AS	-		40	+0,013 -0,002	108	80		94 ±0,2	77	54±0,02	
-	_	KGBO40-PP-AS	1 280					79,5				18,2
KGB50-PP-AS	-	-	2780		+0.013			98				_
	KGBS50-PP-AS	-		50	+0,013 -0,002	135	100		116 ±0,2	96	67,5±0,02	
-	-	KGBO50-PP-AS	2 460					93				22,7

¹⁾ Ausführungen und Maße, siehe Seite 31.

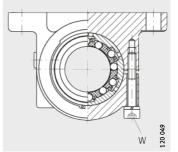
²⁾ Die Tragzahlen gelten nur bei gehärteten (670 HV + 165 HV) und geschliffenen Wellenlaufbahnen.


³⁾ Tragzahl in Hauptlastrichtung.

⁴⁾ Maß B₂ am Durchmesser F_W.

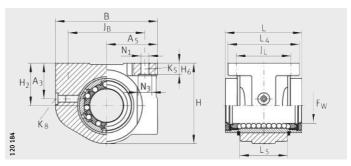

⁵⁾ Für Befestigungsschrauben ISO 4762-8.8. Schrauben sichern, besonders wenn Vorspannungsverluste auftreten können.

⁶⁾ Die Toleranzen gelten für KGB..-PP-AS.


⁷⁾ ① Hauptlastrichtung

KGBO, KGBO..-PP-AS

KGBS..-PP-AS



											Schmier- nippel ¹⁾	Kugel- reihen	Tragzahle	n ²⁾
L ₅	L ₄	J _{L4}	H ₂	A ₃	Н ₆	N ₁	N ₃	K ₅ ⁵⁾	α	Schlüssel- weite W	K ₈		dyn. C	stat. C ₀
			±0,015						o			Anzahl	N	N
20	12	10	20	15	6	5,5	10	M5	-	2	NIPA1	5	540	385
		6,5							78	_		4	600 ³⁾	445 ³⁾
22	15	11	20	15	6	5,5	10	M5	-	2	NIPA1	5	710	530
		6,5							78	-		4	800 ³⁾	620 ³⁾
28	20	14	25	21	8	6,6	11	M6	-	3	NIPA1	6	1 570	1 230
		9,5							60	-		5	1 600 ³⁾	1 280 ³⁾
40	28	20	30	23	10	6,6	11	M6	-	3	NIPA1	6	2 800	2 220
		15							60	-		5	2850 ³⁾	2 330 ³⁾
48	32	24	35	25	10	6,6	11	M6	_	4	NIPA2	6	3 600	2 850
		19							54	-		5	3 700 ³⁾	3 0003)
56	40	28	45	30	12	9	15	M8	-	4	NIPA2	6	6 000	4 400
		23							54	_		5	6 100 ³⁾	4 600 ³⁾
72	52	36	50	34	14	11	18	M10	_	- 5	NIPA2	6	8 700	6 300
		28							54	-		5	8 900 ³⁾	6 600 ³⁾

Linear-Kugellager-Einheiten geschlossen, geschlitzt oder mit Segment-Ausschnitt abgedichtet befettet, nachschmierbar

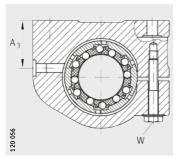
KGBA..-PP-AS

Maßtabelle · Abi	aßtabelle · Abmessungen in mm Masse Abmessungen Anschlussmaße											
Kurzzeichen	nessungen in inin		Masse	Abn	nessunger	1		Ansc	nlussmaße			
			m	F _W		В	L	Н	J _B	A ₅	B ₂ ⁴⁾	L ₄
			≈g		Tole- ranzen ⁷⁾		h12					
KGBA12-PP-AS	-	_	80					34				
_	KGBAS12-PP-AS	-	80	12	+0,008 0	42	32	34	32±0,15	21±0,01		32
	-	KGBAO12-PP-AS	70					30,5			7,7	
KGBA16-PP-AS	-	-	120		.0.000			41			_	
-	KGBAS16-PP-AS	-		16	+0,009 -0,001	50	36		40 ±0,15	25±0,01		35
-	-	KGBAO16-PP-AS	100					37			10,1	
KGBA20-PP-AS	-	-	200		+0,009			47,5			_	
	KGBAS20-PP-AS	-		20	-0,009	60	45		45 ±0,15	30±0,01		42
	-	KGBAO20-PP-AS	170					44,5			10	
KGBA25-PP-AS	-	-	410		.0.011			60			_	
-	KGBAS25-PP-AS	-	,10	25	+0,011 -0,001	74	58		60 ±0,2	37±0,01		54
-	-	KGBAO25-PP-AS	350					56			12,5	
KGBA30-PP-AS	-	-	610		+0,011			67			_	
	KGBAS30-PP-AS	-		30	-0,001	84	68		68±0,2	42±0,01		60
	-	KGBAO30-PP-AS	530					63,5			13,6	
KGBA40-PP-AS	-	-	1 200		.0.013			87			_	
-	KGBAS40-PP-AS	-		40	+0,013 -0,002	108	80		86±0,2	54±0,015		78
-	-	KGBAO40-PP-AS	1 070					82,5			18,2	
KGBA50-PP-AS	-	-	1 880		+0,013			98			_	
	KGBAS50-PP-AS	_		50	-0,002	130	100		108±0,2	65±0,015		70
-	-	KGBAO50-PP-AS	1 650					93			22,7	

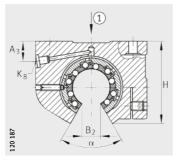
¹⁾ Ausführungen und Maße, siehe Seite 31.

²⁾ Die Tragzahlen gelten nur bei gehärteten (670 HV + 165 HV) und geschliffenen Wellenlaufbahnen.

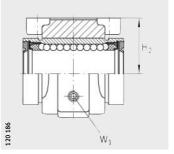
³⁾ Tragzahl in Hauptlastrichtung.


⁴⁾ Maß B₂ am Durchmesser F_W.

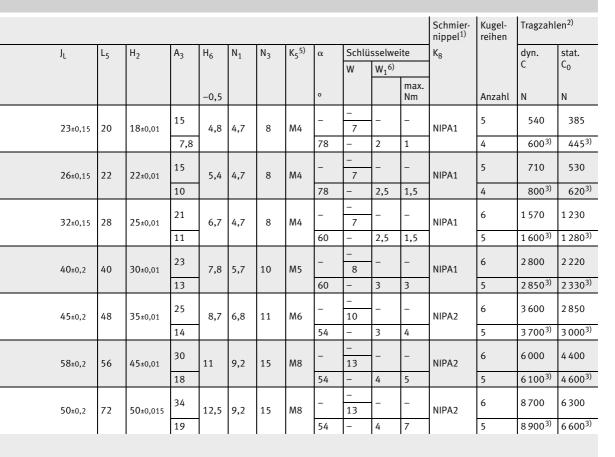
⁵⁾ Für Befestigungsschrauben ISO 4762-8.8. Schrauben sichern, besonders wenn Vorspannungsverluste auftreten können.

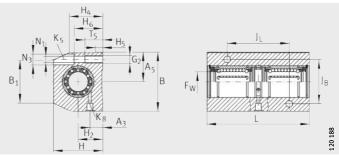

⁶⁾ Maximale Anziehdrehmomente beachten.

⁷⁾ Die Toleranzen gelten für KGBA..-PP-AS.


⁸⁾ ① Hauptlastrichtung

KGBAO..-PP-AS $(1)^{8}$


KGBAO..-PP-AS



Linear-Kugellager-Einheiten

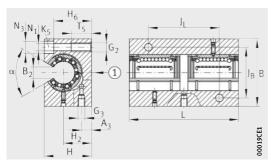
Tandem-Anordnung geschlossen oder mit Segment-Ausschnitt abgedichtet befettet, nachschmierbar

KTB..-PP-AS

Maßtabelle · Al	aßtabelle · Abmessungen in mm urzzeichen Masse Abmessungen Anschlussmaße												
Kurzzeichen		Masse	Abme	ssungen				Anschl	ussmaf	3e			
		m	F _W		В	L	Н	J _B	A ₅	B ₁	B ₂ ³⁾	J _L ⁴⁾	H ₂
		≈g		Tole- ranzen ⁶⁾				±0,15				±0,15	±0,015
KTB12-PP-AS	-	310	12	+0,008	43	76	35	30	21,5	34	-	40	18
_	KTBO12-PP-AS	260	12	0	42	76	30	30	_	_	7,7	40	10
KTB16-PP-AS	-	460	16	+0,009	53	84	42	36	26,5	40	-	45	22
-	KTBO16-PP-AS	360	10	-0,001	50	04	35	- 50	_	_	10,1	45	22
KTB20-PP-AS	-	800	20	+0,009 -0,001	60	104	50	45	30	44	-	55	25
-	KTBO20-PP-AS	620	20	-0,001	60	104	42	45	_	_	10	20	25
KTB25-PP-AS	-	1 490	25	+0,011	78	130	60	54	39	60	_	70	30
-	KTBO25-PP-AS	1 180	25	-0,001	74	130	51	54	_	_	12,5	70	30
KTB30-PP-AS	-	2300	30	+0,011	87	152	70	62	43,5	63	_	85	35
-	KTBO30-PP-AS	1840	30	-0,001	84	132	60	02	_	_	13,6	65))
KTB40-PP-AS	-	3 700	40	+0,013	108	176	90	80	54	76	-	100	45
-	KTBO40-PP-AS	3 000	40	-0,002	100	1/0	77	00	_	_	18,2	100	47
KTB50-PP-AS	-	6 600	50	+0,013	132	224	105	100	66	90	-	125	50
-	KTBO50-PP-AS	5 100	50	-0,002	130	224	88	100	-	_	22,7	123	50

¹⁾ Die Tragzahlen gelten nur bei gehärteten (670 HV + 165 HV) und geschliffenen Wellenlaufbahnen und gleichmäßiger Belastung der beiden Linear-Kugellager.

²⁾ Tragzahl in Hauptlastrichtung.

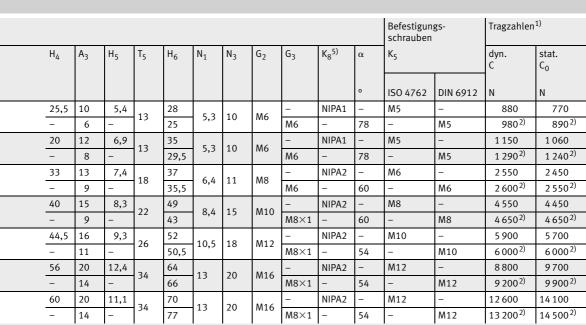

³⁾ Maß B₂ am Durchmesser F_W.

 $^{^{4)}}$ Maß J $_{\rm L}$ und Schmierbohrung symmetrisch zur Lagerlänge L.

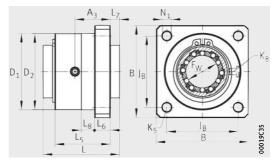
⁵⁾ Schmiernippel. Ausführungen und Maße, siehe Seite 31.

⁶⁾ Die Toleranzen gelten für KTB..-PP-AS.

⁷⁾ ① Hauptlastrichtung


KTBO..-PP-AS 1)7)

111	ш	
Gran.	***	-
QCE.	ежже	- QUIEN



	65	2	i
			1

Linear-Kugellager-Einheit mit Flansch abgedichtet befettet, nachschmierbar

KFB..-B-PP-AS

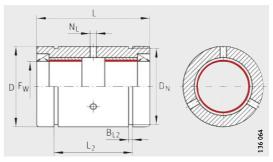
Maßtabelle · Abmes	sungen in m	ım							
Kurzzeichen	Masse	Abme	essungen			Anschlussn	naße		
	m	F _W		В	L	L ₅	L ₆	L ₇	A ₃
	≈g		Toleranzen						
KFB12-B-PP-AS	80	12	+0,008	40	32	22	6	4,2	11,5
KFB16-B-PP-AS	120	16	+0,009 -0,001	50	36	24	8	5,2	12,5
KFB20-B-PP-AS	220	20	+0,009 -0,001	60	45	30	10	6,7	15,8
KFB25-B-PP-AS	430	25	+0,011 -0,001	70	58	42	12	7	22
KFB30-B-PP-AS	640	30	+0,011 -0,001	80	68	50	14	8	26
KFB40-B-PP-AS	1 280	40	+0,013 -0,002	100	80	59	16	9,2	30,3
KFB50-B-PP-AS	2160	50	+0,013	130	100	75	18	11,2	38,8

¹⁾ Die Tragzahlen gelten nur bei gehärteten (670 HV + 165 HV) und geschliffenen Wellenlaufbahnen.

²⁾ Für Befestigungsschrauben ISO 4762-8.8. Schrauben sichern, besonders wenn Vorspannungsverluste auftreten können.

³⁾ Schmiernippel. Ausführungen und Maße, siehe Seite 31.

									Tragzahlen ¹⁾		
	N ₁	K ₅ ²⁾	D ₁ +0,2	D ₂ g7	J _B	L ₈	K ₈ ³⁾	reihen	dyn. C	stat. C ₀	
								Anzahl	N	N	
	5,5	M5	31,5	32	30	10	NIPD3	5	540	385	
	5,5	M5	37,5	38	35	10	NIPD3	5	710	530	
	6,6	M6	45,5	46	42	10	NIPD3	6	1 570	1 230	
	6,6	M6	57,5	58	54	10	NIPA1	6	2 800	2 2 2 2 0	
•	9	M8	65,5	66	60	10	NIPA1	6	3 600	2850	
	11	M10	89,5	90	78	10	NIPA1	6	6 000	4 400	
	11	M10	97,5	98	98	10	NIPA2	6	8 700	6300	



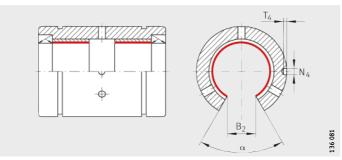
Gleitlager-Reihe

Linear-Gleitlager

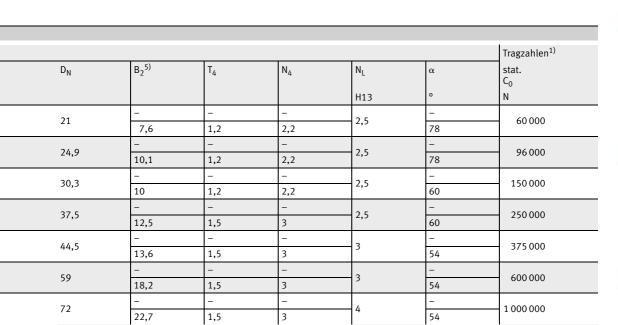
geschlossen oder mit Segment-Ausschnitt abgedichtet befettet, nachschmierbar

PAB..-PP-AS, PABO..-PP-AS

Maßtabelle · Abmes	sungen in mm								
Kurzzeichen		Masse	Abmessungen			Anschlus	Anschlussmaße		
		m	F _W	D	L	L ₂ ³⁾	B _{L2} ⁴⁾		
		≈g		h7 ²⁾	h12	H13	H13		
PAB12-PP-AS –		26	12	22	22	22.6	1.2		
_	PABO12-PP-AS	21	12	22	32	22,6	1,5	1,3	
PAB16-PP-AS	-	34	1.0	26	36	24.6	1.2	1.2	
-	PABO16-PP-AS	28	16		36	24,6	1,3		
PAB20-PP-AS	-	68	20	32	45	31,2	1,6		
-	PABO20-PP-AS	58	20	32	45	31,2	1,6		
PAB25-PP-AS	-	132	25	40	58	43,7	1 05	1,85	
-	PABO25-PP-AS	113	25	40	20	43,7	1,65		
PAB30-PP-AS	-	169	30	47	68	E1 7	1 05	1.05	
_	PABO30-PP-AS	143	30	47	00	51,7	1,85		
PAB40-PP-AS	-	426	40	62	90	(0.2	2.15		
-	PABO40-PP-AS	362	40	02	80	60,3	2,15		
PAB50-PP-AS	-	773	50	75	100	77,3	2,65	2.65	
-	PABO50-PP-AS	657	70	/ 3	100	11,3	2,05		


¹⁾ Die statischen Tragzahlen haben beim Einbau obiger Lager in Gehäuse – wie auf den folgenden Seiten dargestellt – keine Gültigkeit.

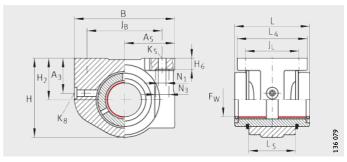
²⁾ Die Toleranz gilt nur für PAB..-PP-AS.


³⁾ Bohrungen symmetrisch zur Lagerlänge L.

 $^{^{4)}\,}$ Nutmaße passend zu Sicherungsringen nach DIN 471.

 $^{^{5)}}$ Maß B_2 am Durchmesser F_W .

PABO..PP-AS Segment-Ausschnitt und Fixierbohrung

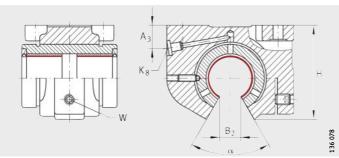


Gleitlager-Reihe

Linear-Gleitlager-Einheiten

geschlossen oder mit Segment-Ausschnitt abgedichtet befettet, nachschmierbar

PAGBA..-PP-AS, PAGBA..-PP-AS


Maßtabelle · Abmessungen in mm										
Kurzzeichen	Masse	Abmessungen			Anschlussmaße					
	m	F _W	В	L	Н	J_{B}	A ₅	B ₂ ²⁾	L ₄	
				1.40						
		≈g			h12					
PAGBA12-PP-AS	-	70	12	42	32	34	32±0,15	21±0,01	-	32
_	PAGBAO12-PP-AS	60	12			30,5		21	7,6	
PAGBA16-PP-AS	-	110	16	50	36	41	40±0,15	25±0,01	_	35
-	PAGBAO16-PP-AS	90	10			36,8		25	10,1	
PAGBA20-PP-AS	-	180	20	60	45	47,5	45±0,15	30±0,01	-	42
-	PAGBAO20-PP-AS	160	20			44,5		30	10	
PAGBA25-PP-AS	-	350	- 25	74	58	60	60±0,2	37±0,01	_	- 54
-	PAGBAO25-PP-AS	310	25	74		56		37	12,5	
PAGBA30-PP-AS	-	480	30	84	68	67	68±0,2	42±0,01	-	60
-	PAGBAO30-PP-AS	430	30	84	00	63,5	00±0,2	42	13,6	60
PAGBA40-PP-AS	-	1 070	40	108	80	87	86±0,2	54±0,015	_	78
-	PAGBAO40-PP-AS	910	40			82,4		54	18,2	/0
PAGBA50-PP-AS	-	1 650	50	130	100	98	108±0,2	65±0,015	-	70
-	PAGBAO50-PP-AS	1 460	750			92,8		65	22,7	/ 0

¹⁾ Ausführungen und Maße, siehe Seite 31.

 $^{^{2)}}$ Maß B_2 am Durchmesser F_W .

³⁾ Für Befestigungsschrauben ISO 4762-8.8. Schrauben sichern, besonders wenn Vorspannungsverluste auftreten können.

⁴⁾ Maximale Anziehdremomente beachten.

 H_6

-0,5

4,8

5,4

6,7

7,8

8,7

11

12,5

 A_3

15

15

10

21

11

23

13

25

14

30

18

34

19

7,8

 $N_1^{(3)}$

4,7

4,7

4,7

5,7

6,8

9,2

9,2

 $N_3^{(3)}$

8

8

8

10

11

15

15

PAGBAO..-PP-AS Segment-Ausschnitt

 L_5

20

22

28

40

48

56

72

 J_{L}

23±0,15

26±0,15

32±0,15

40±0,2

45±0,2

58±0,2

50±0,2

 H_2

18

22

25

30

35

45

50

18±0,01

22±0,01

25±0,01

30±0,01

35±0,01

45±0,01

50±0,015

K₅

M4

M4

M4

M5

M6

М8

M8

2

2,5

2,5

3

3

4

4

Schlüsselweite W⁴⁾

max.

Nm

1

1,5

1,5

3

4

5

7

Schmier-nippel¹⁾

K₈

NIPA1

NIPA1

NIPA1

NIPA1

NIPA2

NIPA2

NIPA2

α

78

78

60

60

54

54

54

Vollwellen Hohlwellen

Vollwellen, Hohlwellen

		Seite
Matrix	Matrix zur Vorauswahl der Vollwellen und Hohlwellen	106
Produktübersicht	Vollwellen, Hohlwellen	108
Merkmale	Präzisionslaufbahn für wirtschaftliche Linearführungen	
	Stähle, Härte, Oberfläche, Toleranzen, Längen	
	Lieferbare Werkstoffe, Beschichtungen, Toleranzen	
	Vollwellen mit Gewindebohrungen	113
	Wellen nach Kundenwunsch	114
	Wellenbearbeitung, Wellenspezifikation	118
Genauigkeit	Längentoleranz	
	Geradheitswert nach ISO 13012	120
Bestellbeispiel,	Vollwelle, ohne Bearbeitung	121
Bestellbezeichnung	Hohlwelle, ohne Bearbeitung	121
	Vollwelle, mit Bearbeitung	121
	Vollwelle, nach Kundenwunsch	
	Wellenführung	123
Maßtabellen	Vollwellen	124
	Empfohlene Gewindebohrungen für Vollwellen	125
	Hohlwellen	126

Schaeffler Technologies WF 1 | 105

Matrix zur Vorauswahl der Vollwellen und Hohlwellen

Vollwellen und Ho	ohlwelle	en	Wellen- durchmesser d _{LW} mm von bis	Normal- toleranz der Welle
Vollwellen ohne Gewinde- bohrungen	W		4 – 80	h6
Vollwellen mit Gewinde- bohrungen	W		10 - 80	h6
Hohlwellen	WH		12 - 80	h7
Wellen nach Kunden- wunsch	W		10 - 80	h6, h7

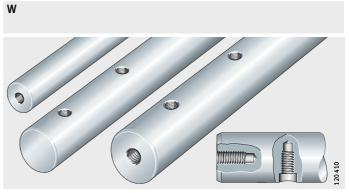
- Bedeutung:

 auf Anfrage lieferbar

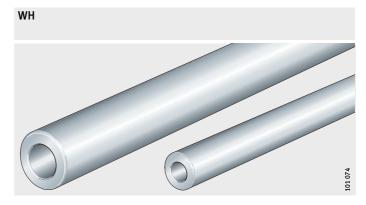
 lieferbar

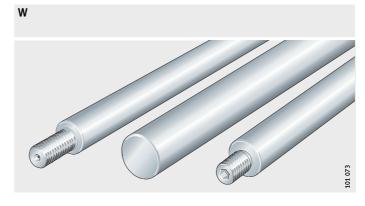
 $[\]overline{}^{1)}$ Nicht für alle Durchmesser lieferbar.

²⁾ Bei WH Cf53 oder C60.


Sondertolerar nur für Wellen	izen,	Stahl			Beschichtung	1)	Beschreibung	
Vergütungssta	ahl	Vergütungs- stahl ²⁾	korrosionsbestä	ndiger Stahl ¹⁾	Hartchrom Corrotect®			
	Cf53 X46Cr13 X90CrMoV1						Seite	
j5	f7	•					109	
j5	f7	•				•	113	
h7	_	•	_	_		•	109	
j5	f7	•				•	114	

Produktübersicht Vollwellen, Hohlwellen


Vollwellen ohne Gewindebohrungen


Axiale und radiale Gewindebohrungen

Hohlwellen

Wellen nach Kundenwunsch

Merkmale

Vollwellen und Hohlwellen sind Präzisionswellen aus Vergütungsstahl in Wälzlagerqualität und werden in metrischen Abmessungen geliefert.

Hohlwellen eignen sich besonders für gewichtsreduzierte Konstruktionen. Vollwellen können zur Befestigung mit radialen und axialen Gewindebohrungen versehen oder auf Anfrage komplett nach Kundenzeichnung gefertigt werden, siehe Seite 113 bis Seite 117.

Präzisionslaufbahn für wirtschaftliche Linearführungen

Die Werkstoffqualität der Wellen garantiert eine große Maß- und Formgenauigkeit (Rundheit, Parallelität). Durch die hohe Oberflächenhärte und Oberflächengüte eignen sich die Wellen damit sehr gut als Präzisionslaufbahn für Linear-Kugellager.

Präzisionswellen sind auch als Führungsstangen für Gleitbuchsen, als Streck- und Richtwalzen und im Vorrichtungs- und Automatenbau geeignet.

In Verbindung mit Linearkugellagern, Stütz- und Kurvenrollen, Laufrollen und Profillaufrollen entstehen tragfähige, steife, genaue, montagefertige und wirtschaftliche Linear-Führungen mit einer langen Gebrauchsdauer.

Stähle, Härte, Oberfläche, Toleranzen, Längen

Wellen aus Cf53 (Werkstoff-Nummer 1.1213) sind induktiv gehärtet und geschliffen; die Härte der Oberfläche ist 670 HV + 165 HV (59 HRC + 6 HRC).

Hohlwellen sind nur aus Vergütungsstahl lieferbar.

Wellen aus korrosionsbeständigem Stahl nach ISO 683-17 und EN 10880

Alternativ zum Vergütungsstahl gibt es die Vollwellen auch in korrosionsbeständigen Stählen, zum Beispiel als X46Cr13 (Werkstoff-Nummer 1.4034) oder X90CrMoV18 (Werkstoff-Nummer 1.4112). Die Härte der Oberfläche bei X46 ist 520 HV + 115 HV (52 HRC + 4 HRC). Die Härte der Oberfläche bei X90 ist 580 HV + 85 HV (54 HRC + 4 HRC).

Diese Stähle eignen sich besonders für den Einsatz in der Nahrungsmittelindustrie, der Medizintechnik und der Halbleitertechnik.

Das Nachsetzzeichen ist X46 oder X90.

Aufgrund des Härteverlaufs ist die Korrosionsbeständigkeit bei Wellen der Werkstoffe X46Cr13 und X90CrMoV18 an den Stirnseiten nur eingeschränkt vorhanden. Dies gilt auch für eventuell weichgeglühte Bereiche.

Härte, Oberfläche, Toleranzen, Längen

Eine gleichmäßige Einhärtungstiefe gewährleistet den stetigen Übergang von der gehärteten Randschicht auf den zähen, normalgeglühten Kern, der Biegebeanspruchungen aufnehmen kann.

Die Standard-Oberfläche ist Ra 0,3.

Vollwellen haben die Normaltoleranz h6, Hohlwellen h7.

Einteilig sind Präzisionswellen in Längen bis zu 6 000 mm lieferbar. Längere Wellen sind auf Anfrage und zusammengesetzt (verzapft) erhältlich.

Lieferbare Stähle und Toleranzen, siehe Seite 112.

Beschichtungen

Beschichtungen und Hartverchromung liefern für die Wellen einen optimalen Verschleiß- und Korrosionsschutz und sind optional. Die Eigenschaften der Beschichtungen zeigt auch die Tabelle Beschichtungen, Seite 111.

Hartverchromung – Verschleißschutz

Die Hartverchromung eignet sich für Anwendungen, bei denen ein hoher Verschleißschutz notwendig ist. Gleichzeitig bietet die Chromschicht eine gute Korrosionsbeständigkeit.

Verchromte Wellen haben die Toleranz h7. Die Dicke der Chromschicht beträgt mindestens 5 μ m, die Härte 800 HV bis 1050 HV. Das Nachsetzzeichen ist CR.

Corrotect® – Korrosionsschutz

Rostgeschützte Wellen sind mit der Spezialbeschichtung Corrotect[®] beschichtet und haben fertigungsbedingt stirnseitig Zentrier- oder Gewindebohrungen.

Hohlwellen sind am Innen-Durchmesser nicht beschichtet.

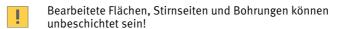
Corrotect[®] ist beständig gegen neutrale, organische Flüssigkeiten, wie zum Beispiel Öl, Bremsflüssigkeit und Benzin.

Für Anwendungen, in denen wässrige Salzlösungen im PH-Bereich von 5 bis 10 zum Einsatz kommen, ist Corrotect[®] ebenfalls auf Grund seiner guten Beständigkeit geeignet.

Das Nachsetzzeichen ist RRF.

Corrotect[®] reduziert das Anhaften von Schweißspritzern!
Corrotect[®] kann durch schleifende Dichtungen abgetragen werden!
Die Beschichtung ist für den direkten Kontakt mit Lebensmittel nicht zugelassen und nicht geeignet bei abrasiven Umgebungsmedien!

Sie genügt damit den Anforderungen RoHS gemäß EU-Richtlinie 2002/95/EG. Alle anderen Vorteile sind identisch mit der Standard-Corrotect®-Schicht.


Das Nachsetzzeichen ist RROC.

Beschichtungen

Merkmal	Beschichtung							
	Corrotect®		Hartchrom					
	Cr(VI)-haltig ¹⁾	CR(VI)-frei						
Nachsetzzeichen	RRF	RROC	_					
Farbe	schwarz	farblos, blau bis irisierend	chrom					
Schichtdicke in µm	0,5 - 5,0	0,5 – 5,0	5,0 - 15,0					
Zusammensetzung	Zink legiert mit Eisen und Kobald	Zink legiert mit Eisen	Chrom					
Schichthärte in HV	300	300	800 – 1 050					
Korrosionsschutz ²⁾ in h	96	96	120					
Verschleißschutz	-	-	ja					
maximale Wellenlänge in mm	3 500	3 500	$\emptyset 6 - 8 = 3900$ $\emptyset \ge 10 = 5900$					
Cr(VI)-frei	nein	ja	nein					

¹⁾ Cr(VI)-haltige Teile sind nicht für die Lebensmittelindustrie geeignet.

²⁾ Salzsprühtest nach DIN 50021.

Lieferbare Werkstoffe, Beschichtungen, Toleranzen Voll- und Hohlwellen

Wellen-	Vollwellen	Hohlwellen				
durch- messer	Werkstoff					
illessei	Vergütungs	stahl		X46Cr13	X90CrMoV18	Vergütungs- stahl
	Toleranz ³⁾	CR ¹⁾	CR ¹⁾ RRF RROC ²⁾			Toleranz
mm	h6	h7	h6	h6	h6	h7
4	•	-		-	•	_
5	•	_		_	-	-
6	•	•		•	•	-
8	•	•		•	•	_
10	•	•		•	•	_
12	•	•		•	•	•
14	•	•		•	•	_
15	•	•		•	•	_
16	•	•		•	•	•
20	•	•		•	•	•
25	•	•		•	•	•
30	•	•		•	•	•
40	•	•		•	•	•
50	•	•		•	•	•
60	•	•		_	_	•
80	•	•		_	_	•

- Auf Anfrage.
- Lieferbare Ausführung.
- 1) Hartverchromung, siehe Seite 110.
- 2) Corrotect®-Beschichtung, siehe Seite 110.
- 3) Abweichende Toleranzen auf Anfrage.

Vollwellen mit Gewindebohrungen

Sollen Wellen unterstützt oder mit anderen Elementen verbunden werden, sind Befestigungsbohrungen notwendig.

Als Standard-Gewindebohrungen für Vollwellen gibt es die Bohrbilder B01 bis B05 nach Tabelle.

Zusätzlich sind Bohrungen nach Kundenzeichnung mit oder ohne Gewinde möglich, *Bild 1*, Seite 114 bis *Bild 13*, Seite 117. Bestellbeispiele, siehe Seite 121.

Kennzahlen für Bohrbilder

Kennzahl	Ausführung der Bohrungen
B01	einseitig Axialgewinde
B02	beidseitig Axialgewinde
B03	Radialgewinde
B04	Radialgewinde und einseitig Axialgewinde
B05	Radialgewinde und beidseitig Axialgewinde

Wellen nach Kundenwunsch

Zur Anfrage von Sonderwellen bitte eigene Zeichnung verwenden oder unsere Vorlagen kopieren und gewünschte Werte vervollständigen, *Bild 1* bis *Bild 13*, Seite 117.

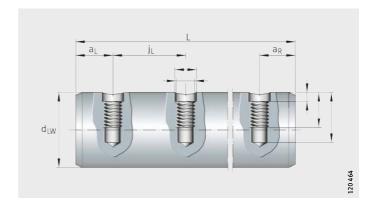
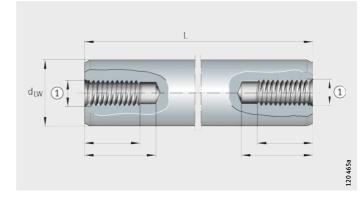
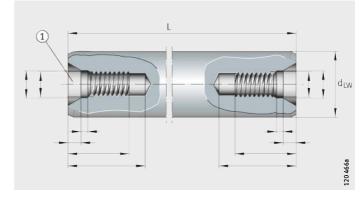




Bild 1 Radialbohrungen mit und ohne Gewinde

① Durchmesser nach DIN 336 oder DIN 13

Bild 2 Innengewinde, einseitig oder zweiseitig

① Bei Gewinde mit Zentrierbohrung DIN 332-D empfohlen

Bild 3
Innengewinde mit Zentrierbohrung

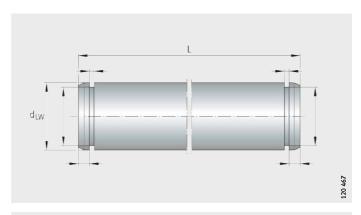


Bild 4 Einstich für Sicherungsring

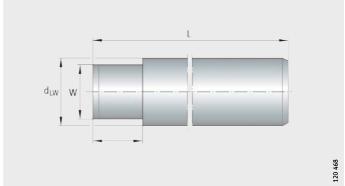
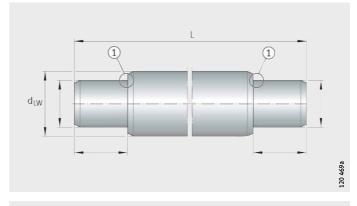



Bild 5 Schlüsselweite W

① Freistich Form F DIN 509 (beidseitig)

Bild 6 Zapfen

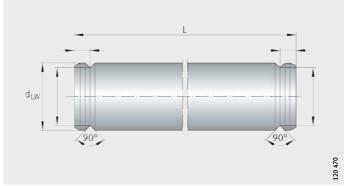
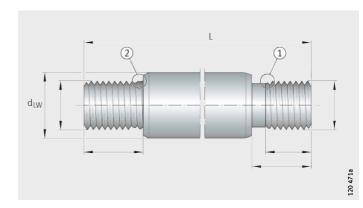



Bild 7 90°-Einstich

- ① Gewindeauslauf nach DIN 76-1A, bei Freistich nach DIN 76-A
- ② Bei Freistich DIN 76-A empfohlen

Bild 8 Gewindezapfen

- 1 Bei Freistich DIN 76-A empfohlen 2 Bei Freistich Form F DIN 509 empfohlen ③ Gewindeauslauf nach DIN 76-1A
 - Bild 9 Zapfen und Gewindezapfen

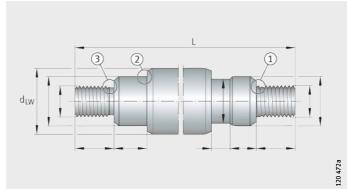


Bild 10 Nut

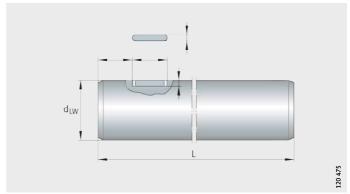
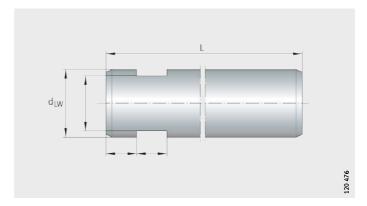
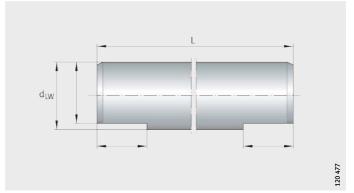
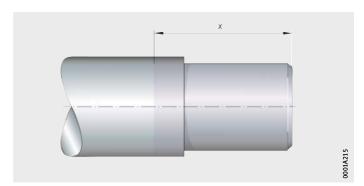




Bild 11 Passfedernut

Bild 12 Schlüsselfläche


Bild 13 Fläche

Wellenbearbeitung, Wellenspezifikation Weichgeglühte Wellen

Zusätzliche Bearbeitungen (wie Zapfen, Abflachungen, Außengewinde) können an den entsprechenden Stellen ein Weichglühen erfordern. Hierbei können geringe Veränderungen der Maß-, Form- und Lagetoleranzen und Oberflächengüte im weichgeglühten Bereich auftreten, *Bild 14*. Im Glühbereich sind Materialverfärbungen möglich, im Übergangsbereich eine Resthärte.

Bei korrosionsbeständigen Stählen, den X-Materialien, ist hier dann nur eingeschränkter Korrosionsschutz gegeben!

x = Weichgeglühter Bereich

Bild 14 Weichgeglühte Welle

Standardfase

Die Wellenenden werden nach dem Ablängen an beiden Seiten angefast, *Bild 15* und Tabelle. Sie können aber auch ohne Fasen als Trennschnitt geliefert werden, *Bild 16*, Seite 119.

Fase, abhängig vom Wellendurchmesser

Wellendurchmesser d _{LW}	Fase x	Planlauf t ₄
mm	mm	mm
d _{LW} ≦ 8	0,5 × 45°	0,2
$8 < d_{LW} \leq 10$	1+1	0,2
$10 < d_{LW} \le 30$	1,5 ⁺¹	0,3
$30 < d_{LW} \le 80$	2,5 ⁺¹	0,5

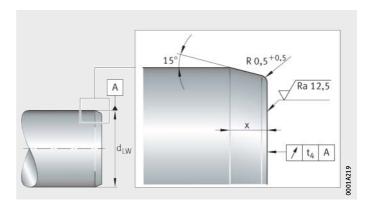
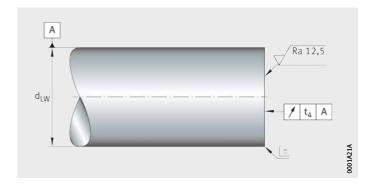



Bild 15 Standardfase

Trennschnitt

Beim Trennschnitt wird die Welle nur abgelängt, *Bild 16*. Es erfolgt keine weitere Bearbeitung der Stirnseiten. Dadurch kann ein Grat vorhanden sein. Das Nachsetzzeichen ist T.

t₄ = Planlauftoleranz, Tabelle, Seite 118

> Bild 16 Trennschnitt

> > Geradheit

Die Standard-Geradheit zeigt Bild 17.

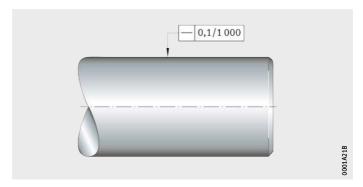


Bild 17 Geradheit

Gestoßene, verzapfte Wellen

Wenn die Wellenlänge über die Walzwerkslänge hinaus geht, werden die Wellen gestoßen.

Bei gestoßenen Wellen werden die Einzelstücke miteinander verzapft, *Bild 18*. Die Stöße sind entsprechend markiert. Verschraubte Wellen gibt es auf Anfrage.

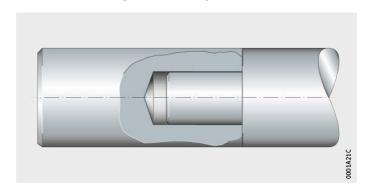
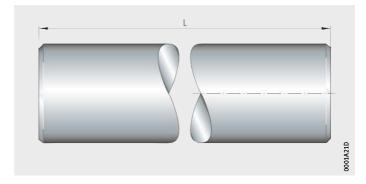


Bild 18 Gestoßene und verzapfte Welle


Genauigkeit Längentoleranz

Längentoleranzen sind abhängig von der Wellenlänge, siehe Tabelle und *Bild 19*.

Sondertoleranzen sind auf Anfrage möglich.

Toleranz

Wellenlänge L mm		Toleranz mm		
über	bis	max.		
-	400	±0,5		
400	1 000	±0,8		
1 000	2 000	±1,2		
2000	4 000	±2		
4000	6 000	±3		

Bild 19 Längentoleranz

Geradheitswert nach ISO 13012

Die Messstellen sind im Abstand von 1000 mm. Wellen < 1000 mm haben maximal zwei Messstellen, $Bild\ 20$.

Die Geradheitstoleranz ist die Hälfte des Messuhrwerts bei einer Wellendrehung von 360°.

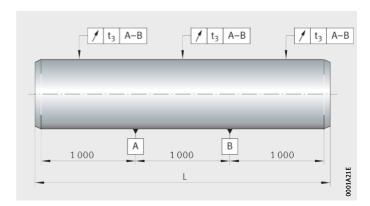


Bild 20 Geradheitsmessung

Bestellbeispiel, Bestellbezeichnung

Länge 1 200

Trennschnitt –

Standardfase kein Nachsetzzeichen

Bestellbezeichnung W20/h6-Cf53-1200

 $\begin{array}{ccc} & \text{Hohlwelle,} & \text{Typ} & \text{WH} \\ \text{ohne Bearbeitung} & \text{Wellendurchmesser d}_{\text{LW}} & 20 \\ & \text{Toleranz} & \text{h7} \\ & \text{Werkstoff} & \text{C60} \end{array}$

Beschichtung –
Länge 1 500
Trennschnitt T
Standardfase –

Bestellbezeichnung WH20/h7-C60-1 500-T

 $\begin{array}{ccc} & \text{Vollwelle,} & \text{Typ} & \text{W} \\ \text{mit Bearbeitung} & \text{Wellendurchmesser d}_{\text{LW}} & 30 \end{array}$

Toleranz h7 Werkstoff Cf53 Beschichtung Cr Bohrbild B05 Axialgewinde M12 Radialgewinde M10 Bohrungsabstand Radialgewinde 100 Länge 1110 Trennschnitt Τ Standardfase 60 Abstand a

50

Bestellbezeichnung W30/h7-Cf53-Cr-B05/M12-M10×100-1110-T-60-50

Abstand a_R

Vollwelle, nach Kundenwunsch

Reichen die Standardbezeichnungen für die Beschreibung der Welle nicht, legen Sie Ihrer Anfrage bitte eine Zeichnung bei.

Mögliche Bestellbezeichnung für Standard-Wellen

Typ W, WH Wellendurchmesser d_{LW} 10 bis 80 Toleranz¹⁾ h6, h7 Werkstoff²⁾ Cf53, X46, X90 Beschichtung Cr, RROC

Bohrbild B01, B02, B03, B04, B05

Axialgewinde³⁾ M3 bis M24 Radialgewinde³⁾ M4 bis M14

Bohrungsabstand gemessen vom Bohrungsmittelpunkt,

Radialgewinde j_L Bild 21

Länge³⁾ einteilig bis 6000

Trennschnitt

Standardfase kein Nachsetzzeichen

Abstand a Wellenanfang - erste Bohrung,

Bild 21

letzte Bohrung - Wellenende, Abstand a_R

Bild 21

³⁾ Durchmesserabhängig, siehe Maßtabelle Seite 124 bis Seite 126.

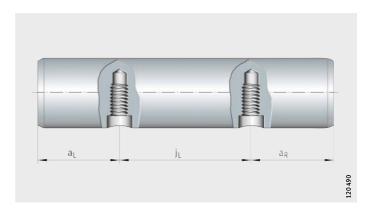


Bild 21 Bohrungsabstand der Radialgewinde j_L

¹⁾ Verfügbare Toleranzen sind durchmesserabhängig, siehe Maßtabelle Seite 124 und Seite 126.

²⁾ Hohlwellen sind nur in Cf53 und C60 erhältlich.

Wellenführung

Elemente von Wellenführungen (Linear-Kugellager, Voll- und Hohlwellen) sind getrennt zu bestellen.

Die Bestellbezeichnung eines Elements besteht aus dem Kurzzeichen und spezifizierenden Angaben – sofern notwendig, siehe Bestellbezeichnung für Welle mit Axialgewinde,

Linear-Kugellager und *Bild 22*.

Die Kurzzeichen sind in den Maßtabellen angegeben. Spezifizierende Angaben beschreiben die Einheit näher.

Gewünscht

Eine Wellenführung in korrosionsbeständiger Ausführung mit zwei abgedichteten und rostgeschützten Linear-Kugellagern.

Welle mit Axialgewinde Korrosionsbeständige Welle W20/h6-X90

Kennzahl für Bohrbild B02 Axialgewinde M8 Länge der Welle 3 500

Bestellbezeichnung 1×W20/h6-X90-B02/M8-3500

Linear-Kugellager Linear-Kugellager KB

Größenkennziffer 20 schleifende Dichtung an beiden Stirnseiten PP Corrotect[®]-Beschichtung RR nachschmierbar AS

Bestellbezeichnung

2×KB20-PP-RR-AS

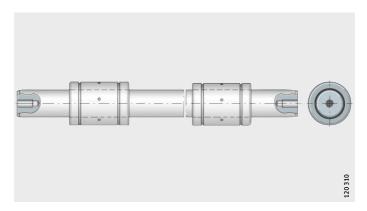
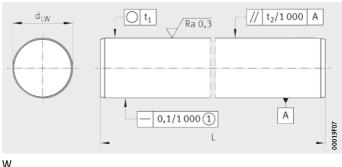
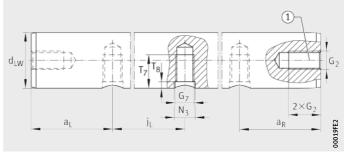



Bild 22 Welle mit Axialgewinde, zwei Linear-Kugellager

Vollwellen

W ① 3)

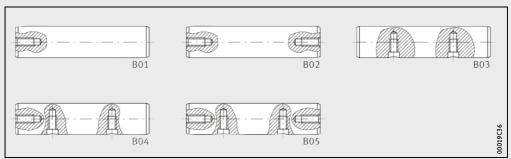

Maßtabelle · Abmes	ssungen in mm						
Kurzzeichen	Masse	Abmess	ungen	Toleranz	Rundheit	Parallelität	Randhärtetiefe
	m	d _{LW}	L	h6	t ₁	t ₂ ¹⁾	SHD ²⁾
	≈kg/m			μm	μm	μm	min.
W04	0,1	4	2 500	0 -8	4	5	0,4
W05	0,15	5	4 000	0 -8	4	5	0,4
W06	0,22	6	4 000	0 -8	4	5	0,4
W08	0,39	8	4 000	0 -9	4	6	0,4
W10	0,62	10	6 000	0 -9	4	6	0,4
W12	0,89	12	6 000	0 -11	5	8	0,6
W14	1,21	14	6 000	0 -11	5	8	0,6
W15	1,39	15	6 000	0 -11	5	8	0,6
W16	1,58	16	6 000	0 -11	5	8	0,6
W20	2,47	20	6 000	0 -13	6	9	0,9
W25	3,85	25	6 000	0 -13	6	9	0,9
W30	5,55	30	6 000	0 -13	6	9	0,9
W40	9,87	40	6 000	0 -16	7	11	1,5
W50	15,41	50	6 000	0 -16	7	11	1,5
W60	22,2	60	6 000	0 -19	8	13	2,2
W80	39,45	80	6 000	0 -19	8	13	2,2

 $[\]overline{}^{1)}$ Durchmesserdifferenzmessung.

²⁾ Nach DIN ISO 13012.

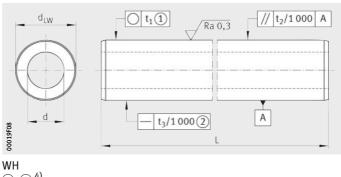
 $^{^{3)}}$ ① Bei Wellenlänge < 400 mm maximal Geradheitstoleranz von 0,04 mm.

Empfohlene Gewindebohrungen für Vollwellen


Axiale und radiale Gewindebohrungen $\widehat{(1)}^{2)}$

Maßtabelle · Abmessungen in mm																			
Kurz-	Axia	lgew	inde								Radialgewinde								
zeichen d _{LW}	G_2							j _L $a_{L min}^{1)}$ Bohrbild B03			a _{R min} ¹⁾ Bohrbild B04–B05	T ₇	T ₈	N ₃	G ₇				
W08	М3	-	-	-	-	-	-	-	-	-	_	_	_	-		-	-	-	-
W10	М3	M4	-	_	-	-	_	_	-	-	_	_	_	-		_	-	_	_
W12	_	M4	M5	-	-	-	-	-	-	-	75	-	120	10		7	2	5	M4
W14	-	M4	M5	M6	-	-	-	-	_	-	_	_	_	-		-	-	-	-
W15	_	-	M5	M6	M8	-	-	-	-	-	-	-	-	-		-	-	-	-
W16	-	-	M5	M6	M8	-	-	-	-	-	75	100	150	15		9	2,5	6	M5
W20	_	_	-	-	-	-	-	-	-	-	-	-	150	15		9	2,5	6	M5
W20	-	-	-	M6	M8	M10	-	-	-	-	75	100	150	15		11	3	7	M6
W25	_	_	_	_	_	-	_	-	_	-	_	_	150	15		11	3	7	M6
W25	_	-	-	ı	M8	M10	M12	ı	-	ı	75	120	200	15	$3 \cdot G_2 + G_7$	15	3	9	M8
W30	_	-	-	-	-	-	-	-	-	-	-	-	150	15		11	3	7	M6
W30	_	_	-	-	-	M10	M12	M16	-	-	100	150	200	20		17	3,5	11	M10
W40	_	-	-	-	-	M10	M12	M16	-	-	150	200	300	20		19	4	11	M10
W40	_	-	-	-	-	M10	M12	M16	-	-	100	_	_	20		21	4	13	M12
W40	_	_	-	-	-	-	-	-	-	-	-	-	150	20		19	4	11	M10
W50	_	_	_	_	_	-	M12	M16	M20	-	_	200	300	20		21	4	13	M12
W50	-	-	-	_	-	-	M12	M16	M20	-	100	_	_	20		25	4	15	M14
W60	-	_	-	ı	-	ı	ı	M16	M20	M24	-	-	-	1		ı	-	ı	-
W80	_	ı,	-	-	-	-	-	M16	M20	M24	_	_	_	_		-	1	-	-

¹⁾ a_L, a_R ist von der Länge der Welle abhängig. Berechnung, siehe Seite 134.


Bei Ausführungen nach Kennzahlen B04 und B05 sind die Axialgewinde zu berücksichtigen.

²⁾ ① Je nach Bohrungsdurchmesser kann sich im Bereich der Axialbohrung der Wellenaußendurchmesser vergrößern, sodass es in diesem Bereich zu Abweichung der Toleranzen kommen kann.

Kennzahlen B01 bis B05 für Bohrbilder

Hohlwellen

1, 2 4)

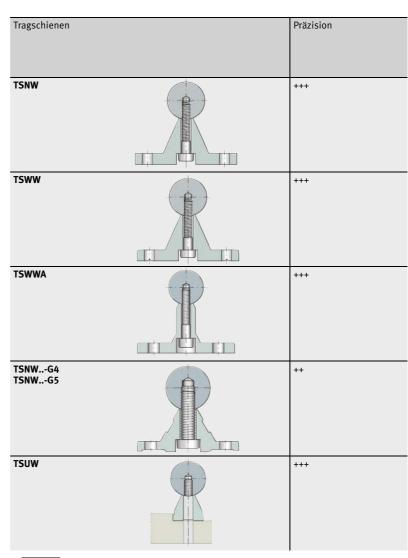
Maßtabelle · Abr	Maßtabelle · Abmessungen in mm										
Kurzzeichen	Masse	Abmessungen		Innen- durchmesser	Toleranz	Parallelität	Geradheit	Randhärte- tiefe			
	m	d _{LW} L		d ¹⁾	d _{LW} h7 ³⁾	t ₂	t ₃	SHD ²⁾			
	≈kg/m		max.		μm	μm	μm	min.			
WH12	0,79	12	5 700	4 ±0,45	0 -18	7	0,3	0,8			
WH16	1,26	16	5 700	7 ±0,15	0 -18	7	0,3	0,8			
WH20	1,28	20	6 000	14 ±0,15	0 -21	9	0,2	1,2			
WH25	2,4	25	7 100	15,4±0,15	0 -21	9	0,2	1,2			
WH30	3,55	30	7 100	18 ±0,15	0 -21	9	0,2	1,5			
WH40	5,7	40	7 100	26 ±0,15	0 -25	11	0,1	1,5			
WH50	10,58	50	6 500	28 ±0,25	0 -25	11	0,1	1,5			
WH60	14,2	60	7 300	36 ±0,3	0 -30	13	0,1	1,5			
WH80	20,8	80	7 300	57,4±0,35	0 -30	13	0,1	2,2			


Wanddickendifferenz des Ausgangsmaterials $\pm 5\%$.

²⁾ Nach DIN ISO 13012.

³⁾ Durchmessertoleranz h6 auf Anfrage.

 ⁴⁾ ① Rundheit entspricht maximal der halben Durchmessertoleranz.
 ② Bei Wellenlänge < 500 mm max. Geradheitstoleranz von 0,1 mm.



Tragschienen

		Seite
Matrix	Matrix zur Vorauswahl der Tragschienen	130
Produktübersicht	Tragschienen	132
Merkmale	Mehrteilige Laufwellen und Tragschienen	133
Konstruktions- und Sicherheitshinweise	Bohrbilder der Tragschienen	134
Genauigkeit	Längentoleranzen für Wellen und Tragschienen	136
Bestellbeispiel, Bestellbezeichnung	Tragschiene	
Maßtahellen	Tragschienen	138

Matrix zur Vorauswahl der Tragschienen

Bedeutung: +++ sehrgut gut

lieferbar

¹⁾ Befestigung durch Verschrauben von unten; Gewinde in der Welle.

Weller	ndurch	messer	d _{LW} in	mm			Merkmale	Befestigun	g	Beschreibung
								Gewinde	Durchgangs- bohrung	
12	16	20	25	30	40	50				Seite
•	•	•	•	•	•	•	Befestigung von oben	_	ja	133
•	•	•	•	•	•	•	Befestigung von oben Lage der Welle hoch	-	ja	133
•	•	•	•	•	-	_	Befestigung von oben schmaler Steg	_	ja	133
•	•	•	•	•	•	-	Befestigung von oben Genauigkeitsklasse (G4, G5) abhängig vom Wellendurchmesser kostengünstig	-	ja	133
•	•	•	•	•	•	•	Gewindebohrungen von unten	1)	-	133

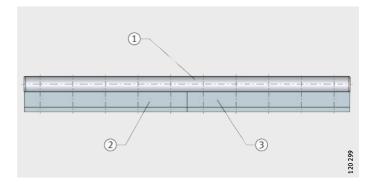
Produktübersicht Tragschienen

Tragschienen

Merkmale

Tragschienen TS..W sind Verbundschienen, bestehend aus einem Tragkörper aus Aluminium und einer Laufwelle, die auf den Tragkörper geschraubt ist. Die Welle ragt an beiden Enden etwa 2 mm bis 3 mm über den Tragkörper hinaus.

Die Laufwelle ist aus Vergütungsstahl, siehe Seite 109. Korrosionsbeständige Ausführung auf Anfrage.


Tragschienen sind je nach Tragschienenlänge aus mehreren Teilstücken zusammengesetzt.

Wellen aus besonderen Materialien, wie beispielsweise mit Beschichtung, sind auf Anfrage lieferbar.

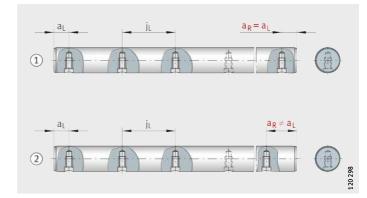
Mehrteilige Laufwellen und Tragschienen

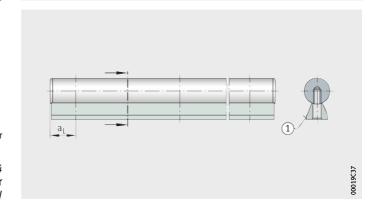
Sind Führungen so lang, dass Tragschienen TS..W mit einteiligen Wellen nicht möglich sind, werden Wellen und Tragkörper mehrteilig geliefert, *Bild 1*. Dabei werden die Wellenteilstücke an den Stoßstellen verzapft und poliert.

Die Stoßstellen von Wellen und Tragkörpern sind versetzt. Die maximale Länge einteiliger Tragschienen beträgt 6 000 mm.

① Welle ② Tragkörper 1

③ Tragkörper 2


Bild 1 Tragschiene mit geteilten Tragkörpern


Konstruktions- und Sicherheitshinweise Bohrbilder der Tragschienen

Ohne besondere Angabe haben Laufwellen und Tragschienen ein symmetrisches Bohrbild, Bild 2 bis Bild 4.

Auf Wunsch ist auch ein unsymmetrisches Bohrbild möglich. Dabei muss $a_{L max} \ge a_{L} \ge a_{L min}$ und $a_{R max} \ge a_{R} \ge a_{R min}$ sein.

- 1) Symmetrisches Bohrbild ② Unsymmetrisches Bohrbild
- Bild 2 Bohrbilder bei Wellen mit einer Bohrungsreihe
- $a_R = a_L$ 0 0 (1) 0 0 0 0 0 aR 0 0 (2) 0 0 0 0
- 1) Symmetrisches Bohrbild ② Unsymmetrisches Bohrbild
- Bild 3 Bohrbilder bei Tragschienen mit zwei Bohrungsreihen

1) Tragkörper

Bild 4 Bohrbilder bei Tragschiene TSUW

Maximale Anzahl der Teilungen

Die Anzahl der Teilungen ist der abgerundete, ganzzahlige Anteil von:

$$n = \frac{l - 2 \cdot a_{L \, min}}{j_L}$$

Für die Abstände a_L und a_R gilt allgemein:

$$a_L + a_R = I - n \cdot j_L$$

Bei Laufwellen und Tragschienen mit symmetrischem Bohrbild gilt:

$$a_{L} = a_{R} = \frac{1}{2} \cdot \left(l - n \cdot j_{L} \right)$$

Anzahl der Bohrungen:

$$x = n + 1$$

Maximal mögliche Anzahl der Teilungen oder

empfohlener Schraubenabstand bei Schienen mit T-Nuten

Schienenlänge

 a_L, a_R

Abstand Schienenanfang und Schienenende zur nächsten Bohrung

 $a_{L\,min},\,a_{R\,min}$

Mindestwerte für a_1 , a_R nach Maßtabellen

 ${\bf a_{L\,max}}, {\bf a_{R\,max}}$ mm Maximalwerte für ${\bf a_{L}}, {\bf a_{R}}$ nach Maßtabellen

mm

j_L Abstand der Bohrungen zueinander

Anzahl der Bohrungen, bei Schienen mit T-Nuten: Anzahl der Schrauben.

Bei Nichtbeachtung der Minimal- und Maximalwerte für a_L und a_R können Senkbohrungen angeschnitten werden! Die Lage a_L für die Tragschiene TSUW zeigt Bild 4, Seite 134!

Schaeffler Technologies

Genauigkeit

Längentoleranzen für Wellen und Tragschienen

Die Längentoleranzen zeigt die Tabelle.

Toleranzen

Wellen- oder Tragschienenlänge L	Längentoleranz
mm	mm
einteilig und mehrteilige Tragschienen	±0,1% der Gesamtlänge
L≦ 400	±0,5
400 < L ≦ 1 000	±0,8
$1000 < L \le 2000$	±1,2
$2000 < L \le 4000$	±2
$4000 < L \le 6000$	±3

Bestellbeispiel, Bestellbezeichnung

 $\begin{array}{ccc} \text{Tragschiene} & \text{Typ} & \text{TSNW} \\ & \text{Wellendurchmesser} \, d_{\text{LW}} & 25 \end{array}$

korrosionsbeständige Ausführung auf Anfrage

Bestellbezeichnung TSNW25-1253-26-27

Mögliche Bestellbezeichnung für Standard-Tragschienen

Typ TSWW, TSNW, TSUW, TSWWA

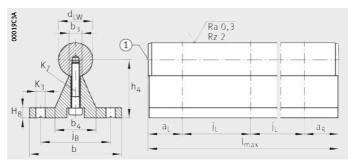
Wellendurchmesser d_{LW} 12 bis 50 Länge 1 200

 $\begin{array}{lll} \mbox{Abstand a_L} & \mbox{Wellenanfang} - \mbox{erste Bohrung} \\ \mbox{Abstand a_R} & \mbox{letzte Bohrung} - \mbox{Wellenende} \end{array}$

korrosionsbeständige Ausführung uuf Anfrage

TSNW

Maßtabelle · Abmessungen in mm																
Kurzzeichen	zeichen Masse Abmessungen						Anschlussmaße									
	m	d_{LW}	b	h ₄ ¹⁾	$l_{max}^{2)}$	b ₃	b ₄	j _Β	j _L	a_L/a_R^3	3)	H ₈	K ₃ ⁴⁾	K ₇		
	≈g/m	h6		±0,02	±3					min.	max.			ISO 4762		
TSNW12	1 670	12	40	22	6 0 0 0	5	17	29	75	20	69	5	4,5	M4×18		
TSNW16	2 950	16	45	26	6 0 0 0	6,8	22,4	33	100	20	93	5	5,5	M5×22		
TSNW20	3 950	20	52	32	6 0 0 0	7,5	26,3	37	100	20	92	6	6,6	M6×25		
TSNW25	5 600	25	57	36	6 0 0 0	9,8	30	42	120	20	110	6	6,6	M8×30		
TSNW30	7 880	30	69	42	6 0 0 0	11	33,4	51	150	20	139	7	9	M10×35		
TSNW40	12830	40	73	50	6 0 0 0	14,5	39,4	55	200	20	189	8	9	M10×35		
TSNW50	19 380	50	84	60	6 0 0 0	18,5	45,2	63	200	20	188	9	11	M12×40		


① Die Welle kann gegebenenfalls gegenüber der Tragschiene ca. 3 mm pro Seite überstehen.

 $^{{\}color{red}^{(1)}} \ \overline{\text{Bezogen}} \ \text{auf Wellen-Nenndurchmesser, gemessen im aufgespannten Zustand.}$

 $^{^{2)}}$ Maximale Länge einteiliger Tragschienen; längere Tragschienen, siehe Seite 133. Der Tragkörper ist je nach Tragschienenlänge aus mehreren Teilstücken zusammengesetzt.

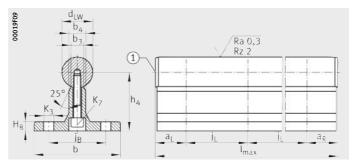
 $^{^{3)}\,}$ Maße $a_L/a_R\,$ sind von der Länge der Tragschiene abhängig. Berechnung, siehe Seite 135.

⁴⁾ Für Befestigungsschrauben DIN 7984. Schrauben sichern, besonders wenn Vorspannungsverluste auftreten können.

TSWW

Maßtabelle · Abmessungen in mm														
Kurzzeichen	Masse	Abme	ssunge	n	Anschlussmaße									
	m	d_{LW}	b	h ₄ ¹⁾	l _{max} ²⁾	b ₃	b ₄	j _Β	j _L	a_L/a_R^3	3)	H ₈	K ₃ ⁴⁾	K ₇
	≈g/m	h6		±0,02	±3					min.	max.			ISO 4762
TSWW12	1 670	12	40	22	6 0 0 0	5	17	29	120	20	114	5	4,5	M4×18
TSWW16	3 1 5 0	16	54	32	6 0 0 0	6,8	24,7	41	150	20	143	6	5,5	M5×25
TSWW20	4 0 3 0	20	54	34,02	6 0 0 0	7,8	24,7	41	150	20	143	6	5,5	M5×25
TSWW25	5 900	25	65	39,66	6 0 0 0	9,3	30,3	51	150	20	142	6	6,6	M6×30
TSWW30	7 580	30	65	42,19	6 0 0 0	9,3	30,3	51	150	20	142	6	6,6	M6×30
TSWW40	14 250	40	85	60	6 0 0 0	16,3	46	65	150	20	139	10	9	M10×45
TSWW50	19750	50	85	65,06	6 0 0 0	16,3	46	65	150	20	139	10	9	M10×45

① Die Welle kann gegebenenfalls gegenüber der Tragschiene ca. 3 mm pro Seite überstehen.



 $^{{\}color{red}^{1)}} \ \overline{\text{Bezogen auf Wellen-Nenndurchmesser, gemessen im aufgespannten Zustand.}}$

²⁾ Maximale Länge einteiliger Tragschienen; längere Tragschienen, siehe Seite 133. Der Tragkörper ist je nach Tragschienenlänge aus mehreren Teilstücken zusammengesetzt.

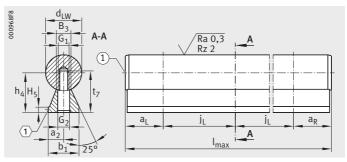
 $^{^{3)}}$ Maße ${\rm a_L/a_R}$ sind von der Länge der Tragschiene abhängig. Berechnung, siehe Seite 135.

⁴⁾ Für Befestigungsschrauben ISO 4762 oder ISO 4017 (TSWW12, DIN 7984). Schrauben sichern, besonders wenn Vorspannungsverluste auftreten können.

TSWWA

Maßtabelle · Abmessungen in mm															
Kurzzeichen	Masse	Abme:	ssungei	า		Anschlussmaße									
	m	d _{LW}	b	h ₄ ¹⁾	l _{max} ²⁾	b ₃	b ₄	j _B	j _L	a_L/a_R^3)	H ₈	K ₃ ⁴⁾	K ₇	
	≈g/m	h6		±0,02	±3					min.	max.			ISO 4762	
TSWWA12	1 930	12	43	28	6 000	5,4	9	29	75	20	69	5	4,5	M4×25 ⁵⁾	
TSWWA16	2800	16	48	30	6 000	7	10	33	100	20	93	5	5,5	M5×25	
TSWWA20	4 120	20	56	38	6 000	8,2	11	37	100	20	92	6	6,6	M6×30	
TSWWA25	5 830	25	60	42	6 000	10,4	14	42	120	20	110	6	6,6	M8×30	
TSWWA30	8 500	30	74	53	6 000	11	14	51	150	20	139	8	9	M10×40	

① Die Welle steht gegenüber der Tragschiene ca. 2 mm pro Seite über.


 $[\]overline{\mbox{Bezogen}}$ auf Wellen-Nenndurchmesser, gemessen im aufgespannten Zustand.

 $^{^{2)}}$ Maximale Länge einteiliger Tragschienen; längere Tragschienen, siehe Seite 133. Der Tragkörper ist je nach Tragschienenlänge aus mehreren Teilstücken zusammengesetzt.

 $^{^{3)}\,}$ Maße $a_L/a_R\,$ sind von der Länge der Tragschiene abhängig. Berechnung, siehe Seite 135.

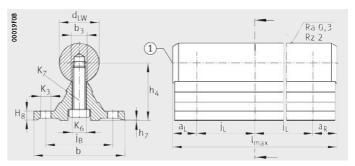
⁴⁾ Für Befestigungsschrauben ISO 4762 oder ISO 4017. Schrauben sind zu sichern, besonders dann, wenn Vorspannungsverluste auftreten können.

⁵⁾ Schrauben DIN 7984.

TSUW

Maßtabelle · Abmessungen in mm															
Kurzzeichen	Masse		ssungen			Anschlussmaße									
	m	d _{LW}	b ₁	h ₄ ¹⁾	l _{max} ²⁾	a ₂	B ₃	j _L	a_L/a_R^3)	H ₅	G_1	G ₂	t ₇	
	≈g/m	h6		±0,02	±3				min.	max.					
TSUW12	1 100	12	11	14,5	6 000	5,5	5	75	20	70	3	M4	4,5	15,5	
TSUW16	1 880	16	14	18	6 000	7	6,8	75	20	70	3	M5	5,5	19	
TSUW20	2 9 2 0	20	17	22	6 000	8,5	7,8	75	20	69	3	M6	6,6	23	
TSUW25	4 420	25	21	26	6 000	10,5	9,8	75	20	68	3	M8	9	28,5	
TSUW30	6 2 2 0	30	23	30	6 000	11,5	11	100	20	92	3	M10	11	31,5	
TSUW40	11 030	40	30	39	6 000	15	14,5	100	20	91	4	M12	13,5	39,5	
TSUW50	16 980	50	35	46	6 000	17,5	18,5	100	20	90	5	M14	15,5	46	

① Anschlagseite; ① Die Welle steht gegenüber der Tragschiene ca. 2 mm pro Seite über. Achtung!


Lieferung Welle und Tragkörper unmontiert.

 $^{{\}color{red}^{(1)}} \ \overline{\text{Bezogen auf Wellen-Nenndurchmesser, gemessen im aufgespannten Zustand.}}$

 $^{^{2)}\,}$ Maximale Länge einteiliger Tragschienen; längere Tragschienen, siehe Seite 133. Der Tragkörper ist je nach Tragschienenlänge aus mehreren Teilstücken zusammengesetzt.

 $^{^{3)}\,}$ Maße a_L/a_R sind von der Länge der Tragschiene abhängig. Berechnung, siehe Seite 135.

TSNW..-G4, TSNW..-G5

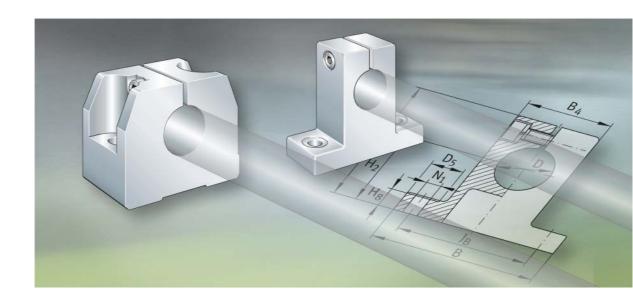
Maßtabelle · Abmessungen in mm											
Kurzzeichen	Masse	Abmessung	en			Anschlussmaße					
	m	d _{LW}	b	h ₄ ¹⁾	l _{max} ²⁾	b ₃	j _B	j∟			
	≈g/m	h6			±2						
	5/										
TSNW12-G4	1 600	12	40	22±0,1	4 000	5	29	75			
TSNW16-G4	2 500	16	45	26±0,1	4 000	6,8	33	100			
TSNW20-G4	3 800	20	52	32±0,1	4 000	7,8	37	100			
TSNW25-G4	5 300	25	57	36±0,1	4 000	9,8	42	120			
TSNW30-G5	7 500	30	69	42±0,15	4 000	11	51	150			
TSNW40-G5	12 400	40	73	50±0,15	4 000	14,5	55	200			

 $[\]ensuremath{\textcircled{1}}$ Die Welle steht gegenüber der Tragschiene ca. 2 mm pro Seite über.

 $^{{\}color{red}^{(1)}} \ \overline{\text{Bezogen auf Wellen-Nenndurchmesser, gemessen im aufgespannten Zustand.}}$

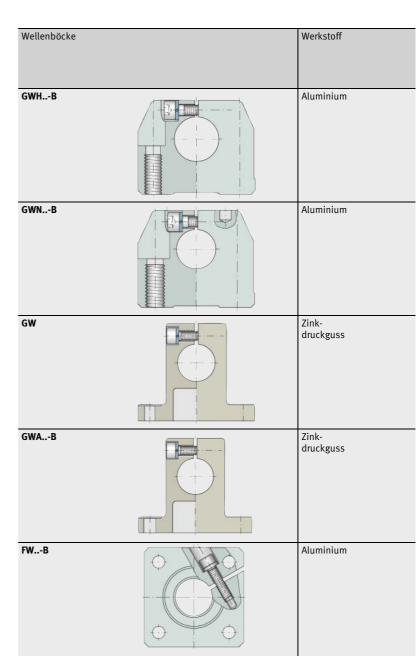
 $^{^{2)}\,}$ Maximale Länge einteiliger Tragschienen.

 $^{^{3)}}$ Maße a_L/a_R sind von der Länge der Tragschiene abhängig. Berechnung, siehe Seite 135.


⁴⁾ Für Befestigungsschrauben DIN 7964. Schrauben sichern, besonders wenn Vorspannungsverluste auftreten können.

 $^{^{5)}}$ Maximale Abweichung vom Maß $\rm h_4$, gemessen auf einer Tragschiene für eine Länge von 1000 mm.

$a_L/a_R^{3)}$		H ₈	h ₇	K ₃ ⁴⁾	K ₆	K ₇	Abweichung von h ₄ ⁵⁾		
							Genauigkeits- klasse	Abweichung	
min.	max.					ISO 4762		mm	
20	69	5	0,2	4,5	4,5	M4×18	G4	0,03	
20	93	5	0,2	5,5	5,5	M5×22	G4	0,03	
20	92	6	0,2	6,6	6,6	M6×25	G4	0,03	
20	110	6	0,3	6,6	9	M8×30	G4	0,03	
20	139	7	0,3	9	11	M10×30	G5	0,04	
20	189	8	0,3	9	11	M10×35	G5	0,04	

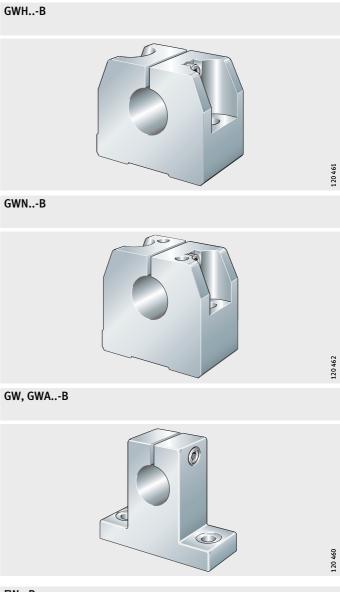


		Seite
Matrix	Matrix zur Vorauswahl der Wellenböcke	146
Produktübersicht	Wellenböcke	148
Merkmale		149
Maßtabellen	Wellenböcke	150
	Wellenbock mit Flansch	154

Schaeffler Technologies WF 1 | 145

Matrix zur Vorauswahl der Wellenböcke

Bedeutung: ● lieferbar für angegebenen Wellendurchmesser d_{LW}


für Wellendurchmesser d _{LW} in mm										Merkmale	Befestigu	ng	Beschreibung	
												Gewinde	Durchgangs- bohrung	
06	08	10	12	14	16	20	25	30	40	50			Domung	Seite
•	•	•	•	•	•	•	•	•	•	•	niedrige Lage der Welle	ja	ja	149
-	-	-	•	-	•	•	•	•	•	•	verstiftbar	ja	ja	149
-	-	•	•	•	•	•	•	•	•	•	bauraum- sparend	-	ja	149
-	-	•	•	-	•	•	•	•	•	•	für größere Befestigungs- schrauben bauraum- sparend	-	ja	149
-	-	_	•	-	•	•	•	•	•	•	verstiftbar	ja	ja	149

Schaeffler Technologies WF 1 | 147

Produktübersicht Wellenböcke

Wellenböcke

Wellenbock mit Flansch

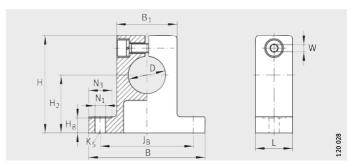
Merkmale

Wellenböcke stützen Wellen ab und fixieren sie an den Wellenenden. Sie sind für alle Voll- und Hohlwellen in diesem Katalog geeignet. Als Werkstoff wird eine Aluminium-Legierung oder Zinkdruckguss eingesetzt.

Die Baureihe GWA..-B ist mit der Reihe GW baugleich, jedoch für größere Befestigungsschrauben geeignet.

Abhängig von der Baureihe haben die Wellenböcke Durchgangsoder Gewindebohrungen.

Schaeffler Technologies WF 1 | 149

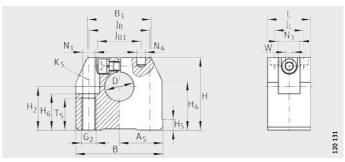


GWH..-B

Maßtabelle · Abmessungen in mm																		
Kurz-	Masse	Abm	essun	gen		Anschl	Anschlussmaße											
zeichen	m	D	В	L	Н	J _B	A ₅	B ₁	H ₂	H ₄	H ₅	T ₅	H ₆	G_2	N_1	N_3	K ₅ ¹⁾	W ²⁾
	≈g	Н8				±0,15			±0,01									
GWH06-B	30	6	32	16	27	22	16	25	15	20,6	5	11	13	M5	4,3	10	M4	2,5
GWH08-B	30	8	32	16	27	22	16	25	16	20,6	5	11	13	M5	4,3	10	M4	2,5
GWH10-B	50	10	40	18	33	27	20	32	18	25,1	5	13	16	M6	5,3	11	M5	3
GWH12-B	50	12	40	18	33	27	20	32	19	25,1	5	13	16	M6	5,3	11	M5	3
GWH14-B	70	14	43	20	36,5	32	21,5	34	20	28,1	6,9	13	18	M6	5,3	11	M5	3
GWH16-B	70	16	43	20	36,5	32	21,5	34	22	28,1	6,9	13	22	M6	5,3	11	M5	3
GWH20-B	120	20	53	24	42,5	39	26,5	40	25	29,8	7,4	18	22	M8	6,6	15	M6	4
GWH25-B	170	25	60	28	52,5	44	30	44	31	36,6	9,9	22	26	M10	8,4	18	M8	5
GWH30-B	220	30	67	30	60	49	33,5	49,5	34	42,7	8	22	29	M10	8,4	18	M8	5
GWH40-B	480	40	87	40	73,5	66	43,5	63	42	49,7	12,8	26	38	M12	10,5	20	M10	6
GWH50-B	820	50	103	50	92	80	51,5	74	50	62,3	10,9	34	46	M16	13,5	24	M12	8

¹⁾ Für Befestigungsschrauben ISO 4762-8.8. Schrauben sichern, besonders wenn Vorspannungsverluste auftreten können.

²⁾ Schlüsselweite.



GW, GWA..-B

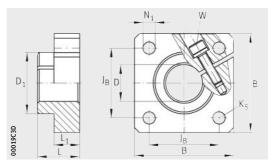
Maßtabelle · A	Abmessun	gen in m	ım										
Kurzzeichen	Masse	Abme	ssungen			Anschlussm	naße						
	m	D	В	L	Н	J _B	B ₁	H ₂	H ₈	N ₁ ¹⁾	N ₃	K ₅	Schlüssel- weite W
	≈g							±0,15					
GW10	30	10	37	11	30	28±0.15	18	17	5	3,4	8	М3	2,5
GWA10-B	30	10	37	11	30	20 ±0,15	10	17)	4,5	9	M4	2,5
GW12	40	12	42	12	35	32±0.15	20	20	5,5	4,5	10	M4	3
GWA12-B	40	12	42	12))	J2 ±0,15	20	20	٥,,٥	5,5	11	M5	,
GW14	60	14	46	14	38	36±0,15	23	22	6	4,5	10	M4	3
GWA14-B	00	14	40	14	50	JU ±0,15	23	22	U	5,5	11	M5	,
GW16	80	16	50	16	42	40±0,15	26	25	6,5	4,5	10	M4	3
GWA16-B	80	10	50	10	42	40 ±0,15	20	23	0,5	5,5	11	M5	,
GW20	150	20	60	20	50	45 ±0,15	32	30	7,5	4,5	10	M4	3
GWA20-B	150	20	00	20	50	45 ±0,15	32	30	7,5	5,5	11	M5	,
GW25	260	25	74	25	58	60±0,15	38	35	8,5	5,5	11	M5	4
GWA25-B	200	23	74	23	50	00 ±0,15	70	33	0,5	6,6	13	M6	4
GW30	380	30	84	28	68	68±0,2	45	40	9,5	6,6	13	M6	5
GWA30-B	760	50	04	20	00	00 ±0,2	4)	40	9,5	9	18	M8	,
GW40	670	40	108	32	86	86±0,2	56	50	12	9,1	18	M8	6
GWA40-B	6/0	40	108	32	00	00±0,2	56	50	12	11,1	22	M10	
GW50	1 380	50	130	40	100	108±0,2	80	60	14	9	18	M8	6
GWA50-B	1 380	50	150	40	100	100 ±0,2	00	60	14	11	22	M10	O

¹⁾ Für Befestigungsschrauben ISO 4762-8.8. Schrauben sichern, besonders wenn Vorspannungsverluste auftreten können.

GWN..-B

Maßtabelle · Abmessungen in mm												
Kurzzeichen	Masse	Abmessi										
	m	D	В	L	Н	J_{B}	J _{B1}	B ₁	A ₅	JL		
	≈g	Н8							±0,01			
GWN12-B	60	12	43	20	35	30±0,15	20	34	21,5	13		
GWN16-B	100	16	53	24	42	38±0,15	26	40	26,5	16		
GWN20-B	170	20	60	30	50	42±0,15	30	44	30	20		
GWN25-B	330	25	78	38	60	56±0,15	40	60	39	25		
GWN30-B	450	30	87	40	70	64±0,15	45	63	43,5	26		
GWN40-B	850	40	108	48	90	82±0,15	65	76	54	32		
GWN50-B	1 400	50	132	58	105	100±0,2	70	90	66	36		

¹⁾ Zentrierung für Stiftbohrung.


Für Befestigungsschrauben ISO 4762-8.8. Schrauben sichern, besonders wenn Vorspannungsverluste auftreten können.

H ₂ ±0,01	H ₄	H ₅	T ₅	H ₆	G ₂	N ₁	N ₄ ¹⁾	N ₃	,	Schlüssel- weite W
20	26,6	5,4	13	16,5	M6	5,3	4	10	M5	3
25	26,6	5,4	18	21	M8	6,6	5	11	M6	4
30	34,1	7,4	22	25	M10	8,4	6	15	M8	5
35	41,5	8,3	26	30	M12	10,5	8	18	M10	6
40	46,2	9,3	26	34	M12	10,5	8	18	M10	6
50	57,6	11,7	34	44	M16	13,5	10	20	M12	8
60	62	10,6	43	49	M20	17,5	12	26	M16	10

Schaeffler Technologies WF 1 153

Wellenbock mit Flansch

FW-B

Maßtabelle · Abmessungen in mm										
Kurzzeichen Masse Abmessungen Anschlussmaße										
	m ≈g	D H8	В	L	L ₁	D ₁	N ₁	K ₅ ¹⁾	J _B	Schlüssel- weite W
FW12-B	50	12	40	20	12	23,5	5,5	M5	30	3
FW16-B	80	16	50	20	12	27,5	5,5	M5	35	3
FW20-B	100	20	50	23	14	33,5	6,6	M6	38	4
FW25-B	160	25	60	25	16	42	6,6	M6	42	5
FW30-B	260	30	70	30	19	49,5	9	M8	54	6
FW40-B	700	40	100	40	26	65	11	M10	68	8
FW50-B	900	50	100	50	36	75	11	M10	75	8

¹⁾ Für Befestigungsschrauben ISO 4762-8.8. Schrauben sichern, besonders wenn Vorspannungsverluste auftreten können.

ST.

Adressen

Argentinien

Schaeffler Argentina S.r.l. Av. Alvarez Jonte 1938 C1416EXR Buenos Aires Argentinien Tel. +(54) 11 40 16 15 00 Fax +(54) 11 45 82 33 20 info-ar@schaeffler.com

Australien

Schaeffler Australia Pty Ltd Level 1, Bldg 8, Forest Central Business Park 49 Frenchs Forest Road Frenchs Forest, NSW 2086 Australien Tel. +(61) 2 8977 1000 Fax +(61) 2 9452 4242 sales.au@schaeffler.com

Belgien

Schaeffler Belgium S.P.R.L./B.V.B.A. Avenue du Commerce, 38 1420 Braine L'Alleud Belgien Tel. +(32) 2 3 89 13 89 Fax +(32) 2 3 89 13 99 info.be@schaeffler.com

Bosnien-Herzegowina

Schaeffler Hrvatska d.o.o. Ogrizovićeva 28b 10000 Zagreb Kroatien Tel. +(385) 1 37 01 943 Fax +(385) 1 37 64 473 info.hr@schaeffler.com

Brasilien

Schaeffler Brasil Ltda. Av. Independência, 3500-A Bairro Éden 18087-101 Sorocaba, SP Brasilien Tel. +(55) 0800 11 10 29 Fax +(55) 1533 35 19 60 sac.br@schaeffler.com

Bulgarien

Dondukov-Blvd. No 62 Eing. A, 6. Etage, App. 10 1504 Sofia Bulgarien Tel. +359 2 946 3900 +359 2 943 4008 Fax +359 2 943 4134 info.bg@schaeffler.com

Schaeffler Bulgaria OOD

China

Schaeffler Trading (Shanghai) Co., Ltd. No. 1 Antuo Road (west side of Anhong Road), Anting, Jiading District 201804 Shanghai China Tel. +(86) 21 3957 6500 Fax +(86) 21 3959 3205 info.cn-shanghai@schaeffler.com

Dänemark

Schaeffler Danmark ApS Jens Baggesens Vej 90P 8200 Århus N Dänemark Tel. +(45) 70 15 44 44 Fax +(45) 70 15 22 02 info.dk@schaeffler.com

Deutschland

Schaeffler Technologies AG & Co. KG Geschäftsbereich Lineartechnik Berliner Straße 134 66424 Homburg (Saar) Deutschland Tel. +(49) 6841 701-0 Fax +(49) 6841 701-2625 info.linear@schaeffler.com

Estland

Schaeffler Technologies Repräsentanz Baltikum Duntes iela 23a 1005 Riga Lettland Tel. +(371) 67 06 37 95 Fax +(371) 67 06 37 96 info.lv@schaeffler.com

Finnland

Schaeffler Finland Oy Lautamiehentie 3 02770 Espoo Finnland Tel. +(358) 207 36 6204 Fax +(358) 207 36 6205 info.fi@schaeffler.com

Frankreich

Schaeffler France SAS 93, route de Bitche, BP 30186 67506 Haguenau Frankreich Tel. +(33) 3 88 63 40 40 Fax +(33) 3 88 63 40 41 info.fr@schaeffler.com

Großbritannien

Schaeffler (UK) Ltd Forge Lane, Minworth Sutton Coldfield B76 1AP Großbritannien Tel. +(44) 121 3 13 58 70 Fax +(44) 121 3 13 00 80 info.uk@schaeffler.com

Italien

Schaeffler Italia S.r.l. Via Dr. Georg Schaeffler, 7 28015 Momo (Novara) Italien Tel. +(39) 3 21 92 92 11 Fax +(39) 3 21 92 93 00 info.it@schaeffler.com

Japan

Schaeffler Japan Co., Ltd. New Stage Yokohama 1-1-32, Shinurashima-cho 221-0031 Yokohama Japan Tel. +(81) 45 274 8211 Fax +(81) 45 274 8221 info-japan@schaeffler.com

Kanada

Schaeffler Canada Inc. 2871 Plymouth Drive Oakville, ON L6H 5S5 Kanada Tel. +(1) 905-829-2750 Tel. +(1) 800-263-4397 Toll Free Fax +(1) 905-829-2563 info.ca@schaeffler.com

Korea

Schaeffler Korea Corporation – 14F, Kyobo life insurance Bldg. #1,Jongno-gu Seoul, 110-714 Korea Tel. +(82) 2 311-3440 Fax +(82) 505-073-2042 sangnam.lee@schaeffler.com

Kroatien

Schaeffler Hrvatska d.o.o. Ogrizovićeva 28b 10000 Zagreb Kroatien Tel. +(385) 1 37 01 943 Fax +(385) 1 37 64 473 info.hr@schaeffler.com

Lettland

Schaeffler Technologies Repräsentanz Baltikum Duntes iela 23a 1005 Riga Lettland Tel. +(371) 67 06 37 95 Fax +(371) 67 06 37 96 info.lv@schaeffler.com

Litauen

Schaeffler Technologies Repräsentanz Baltikum Duntes iela 23a 1005 Riga Lettland Tel. +(371) 67 06 37 95 Fax +(371) 67 06 37 96 info.lv@schaeffler.com

Mexiko

INA México, S.A. de C.V. –
Rodamientos FAG, S.A. de C.V.
Henry Ford #141
Col. Bondojito
Deleg. Gustavo A. Madero
07850 Mexico D.F.
Mexiko
Tel. +(52) 55 5062 6085
Fax +(52) 55 5739 5850
distr.indl.mx@schaeffler.com

Neuseeland

Schaeffler New Zealand (Unit R, Cain Commercial Centre) 20 Cain Road 1135 Penrose Neuseeland Tel. +(64) 9 583 1280 Tel. +(64) 021 324 247 (Call out fee applies) Fax +(64) 9 583 1288 sales.nz@schaeffler.com

Niederlande

Schaeffler Nederland B.V. Gildeweg 31 3771 NB Barneveld Niederlande Tel. +(31) 342 40 30 00 Fax +(31) 342 40 32 80 info.nl@schaeffler.com

Norwegen

Schaeffler Norge AS Grenseveien 107B 0663 Oslo Norwegen Tel. +(47) 23 24 93 30 Fax +(47) 23 24 93 31 info.no@schaeffler.com

Österreich

Schaeffler Austria GmbH Ferdinand-Pölzl-Straße 2 2560 Berndorf-St. Veit Österreich Tel. +(43) 2672 202-0 Fax +(43) 2672 202-1003 info.at@schaeffler.com

Polen

Schaeffler Polska Sp. z.o.o. Budynek E ul. Szyszkowa 35/37 02-285 Warszawa Polen Tel. +(48) 22 8 78 41 20 Fax +(48) 22 8 78 41 22 info.pl@schaeffler.com

Portugal

INA Rolamentos Lda. Arrábida Lake Towers Rua Daciano Baptista Marques Torre C, 181, 2º piso 4400-617 Vila Nova de Gaia Portugal Tel. +(351) 22 5 32 08 00 Fax +(351) 22 5 32 08 60 info.pt@schaeffler.com

Rumänien

S.C. Schaeffler Romania S.R.L. Aleea Schaeffler Nr. 3 507055 Cristian/Brasov Rumänien Tel. +(40) 268 505000 Fax +(40) 268 505848 info.ro@schaeffler.com

Russland

Schaeffler Russland GmbH Piskarevsky prospect, 2, build.3, letter A BC "Benua", office 207 195027 St. Petersburg Russland Tel. +(7) 812 633 3644 Fax +(7) 812 633 3645 info.spb@schaeffler.com

Schaeffler Russland GmbH Leningradsky Prospekt 47, Bau 3 Business-Center Avion 125167 Moscow Russland Tel. +(7) 495 7 37 76 60 Fax +(7) 495 7 37 76 61 info.ru@schaeffler.com

Schweden

Schaeffler Sverige AB Charles gata 10 195 61 Arlandastad Schweden Tel. +(46) 8 59 51 09 00 Fax +(46) 8 59 51 09 60 info.se@schaeffler.com

Schweiz

HYDREL GmbH Badstrasse 14 8590 Romanshorn Schweiz Tel. +(41) 71 4 66 66 66 Fax +(41) 71 4 66 63 33 info.ch@schaeffler.com

Serbien

Schaeffler Technologies Repräsentanz Serbien Branka Krsmanovica 12 11118 Beograd Serbien Tel. +(381) 11 308 87 82 Fax +(381) 11 308 87 75 fagbgdyu@sezampro.yu

Singapur

Schaeffler (Singapore) Pte. Ltd. 151 Lorong Chuan, #06-01 New Tech Park, Lobby A 556741 Singapore Singapur Tel. +(65) 6540 8660 Fax +(65) 6540 8668 info.sg@schaeffler.com

Slowakei

Schaeffler Slovensko, spol. s.r.o. Ulica Dr. G. Schaefflera 1 02401 Kysucké Nové Mesto Slowakei Tel. +(421) 41 4 20 59 11 Fax +(421) 41 4 20 59 18 info.sk@schaeffler.com

Slowenien

Schaeffler Slovenija d.o.o. Glavni trg 17/b 2000 Maribor Slowenia Tel. +(386) 2 22 82-070 Fax +(386) 2 22 82-075 info.si@schaeffler.com

Adressen

Spanien

Schaeffler Iberia, s.l.u. C/ Foment, 2 Polígono Ind. Pont Reixat 08960 Sant Just Desvern - Barcelona Spanien Tel. +(34) 93 4 80 34 10 Fax +(34) 93 3 72 92 50 info.es@schaeffler.com

Südafrika

Schaeffler South Africa (Pty.) Ltd. 1 End Street Ext. Corner Heidelberg Road 2000 Johannesburg Südafrika Tel. +(27) 11 225 3000 Fax +(27) 11 334 1755 info.co.za@schaeffler.com

Tschechische Republik

Schaeffler CZ s.r.o. Průběžná 74a 100 00 Praha 10 Tschechische Republik Tel. +(420) 267 298 111 Fax +(420) 267 298 110 info.cz@schaeffler.com

Türkei

Schaeffler Rulmanlari Ticaret Limited Sirketi Aydin Sokak Dagli Apt. 4/4 1. Levent 34340 Istanbul Türkei Tel. +(90) 212 279 27 41 Tel. +(90) 212 280 77 98 Fax +(90) 212 281 66 45 Fax +(90) 212 280 94 45 info.tr@schaeffler.com

Ungarn

Schaeffler Magyarország Ipari Kft. Rétköz u. 5 1118 Budapest Ungarn Tel. +(36) 1 4 81 30 50 Fax +(36) 1 4 81 30 53 budapest@schaeffler.com

Ukraine

Schaeffler Technologies Representative Office Ukraine Jilyanskayastr. 75, 5-er Stock Business Center «Eurasia» 01032 Kiew Ukraine Tel. +(380) 44-520 13 80 Fax +(380) 44-520 13 81 info.ua@schaeffler.com

USA

Schaeffler Group USA Inc. 308 Springhill Farm Road Corporate Offices Fort Mill, SC 29715 USA Tel. +(1) 803 548 8500 Fax +(1) 803 548 8599 info.us@schaeffler.com

Weißrussland

Schaeffler Technologies AG & Co. KG Repräsentanz Weißrussland Odoewskogo 117, office 317 220015, Minsk Weißrussland Tel. +(375) 17 269 94 81 Fax +(375) 17 269 94 82 info.by@schaeffler.com

Notizen

8 5 mg

Notizen

Schaeffer Technologies AG & Co. KG

Geschäftsbereich Lineartechnik
Berliner Straße 134
66424 Homburg (Saar)
Internet www.ina.de
E-Mail info.linear@schaeffler.com
In Deutschland:
Telefon 0180 5003872
Telefax 0180 5003873
Aus anderen Ländern:

Telefon +49 6841 701-0 Telefax +49 6841 701-2625